【Flink实战系列】Flink 消费 kafka 并行度设置多少合理(kafka 的 partition 和 Flink 的 subtask 对应关系) ?

本文探讨了Flink消费Kafka数据时,如何合理设置并行度。通过分析Flink源码,解释了Flink的Subtask与Kafka Partition之间的关系。当并行度等于、小于或大于Partition数量时,各有什么表现。总结建议,为了数据均匀分布,最好设置并行度与Partition数相等,但可以根据实际数据量适当调整,避免资源浪费。
摘要由CSDN通过智能技术生成

Flink消费kafka数据并行度设置多少比较合理?

最近一个朋友问我的问题,Flink消费kafka数据的时候,并行度设置多少比较合理呢? 假如消费多个topic,又该怎么设置呢?要弄明白这个问题首先你要知道Flink消费kafka数据的时候,Flink的并行度和topic的partition是什么关系?那我们就来简单的看一下源码,FlinkKafkaConsumer的源码比较多,就不从头开始看了,直接看相关部分的代码KafkaTopicPartitionAssigner这个类里面的assign方法.

源码分析

img

上面的这个方法就是决定Kafka分区应分配给的目标子任务的索引,换句话说就是决定kafka的topic的数据应该分配到哪一个Flink的subtask上去.

这段代码的主要的逻辑是对topic的名称取hashcode值,然后和最大的整型数(INT_MAX)做了一个与(&)运算然后在加上分区(partition)的编号,最后再除以并行度就得到了Flink的subtask的值.

可能大家还不是很理解,接下来看一段伪代码就明白了

我们把Flink消费kafka分3种情况

1,paritition > Flink并行度

2,paritition = Flink并行

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JasonLee实时计算

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值