机器学习——CART决策树——泰坦尼克还生还预测

这段代码演示了如何利用Python的pandas库读取泰坦尼克号训练数据,处理缺失值(Age用中位数填充,Embarked用众数'S'填充),对类别特征进行编码,然后使用CART决策树进行建模。模型训练后,通过可视化决策树并评估其特征重要性。接着,使用GridSearchCV寻找最佳的max_depth参数以提高模型准确性,并最终评估模型在测试集上的表现。
摘要由CSDN通过智能技术生成

利用CART分类器进行预测

读取数据

import pandas as pd
data =pd.read_csv("train.csv")

查看数据

# 显示前五行
data.head()

# 显示行数和列数
data.shape

# 显示所有列的数据类型等信息
data.info()

 

# 显示类别Embarked特征列的所有取值及出现次数
data.Embarked.value_counts()

 三、数据处理

1、缺失值处理

在查看数据发现特征Age和Embarked有缺失值

特征Age使用其均值补充

特征Embarked使用众数“S”进行补充

2、特征编码转换

大部分模型只能处理数值型数据

使用将非数值型转换可计算的编码

采用特征编码转换

生成N个二值特征列(取值0或1),每个对应一种取值

使用决策树模型,一般无须对特征进行缩放

# 缺失值处理
data.Age.fillna(data.Age.median(),inplace=True)
data.Embarked.fillna('S',inplace=True)

# 特征编码转换
data.Sex=data.Sex.map({'female':0,'male':1})
embarked_d=pd.get_dummies(data.Embarked,prefix='Embarked',drop_first=True)
data=pd.concat([data,embarked_d],axis=1)

# 将处理好的数据放入
feature_cols=['Pclass','Sex','Age','Embarked_Q','Embarked_S']
X=data[feature_cols]
y=data.Survived

四、训练和选择模型

数据集进行训练

from sklearn.tree import DecisionTreeClassifier
treeclf = DecisionTreeClassifier(max_depth=3,random_state=1)

treeclf.fit(X,y)

五、可视化决策树

import graphviz
from sklearn import tree
from graphviz import Digraph
dot_data = tree.export_graphviz(treeclf,out_file=None,feature_names=feature_cols,class_names='Survived',filled=True,rounded=True,special_characters=True)
graph=graphviz.Source(dot_data)
graph.render('xgboost1') #输出pdf文件
graph

 六、查看特征的重要性

pd.DataFrame({'feature':feature_cols,'importance':treeclf.feature_importances_})

 七、模型评估

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7, test_size=0.3, random_state=4)



from sklearn.model_selection import GridSearchCV
parameters = {'max_depth':[1,3,5,10,15,20,30]}
tree_clf=GridSearchCV(DecisionTreeClassifier(),param_grid=parameters,scoring='accuracy')
tree_clf.fit(X_train,y_train)

print(tree_clf.best_params_)
print(tree_clf.best_score_)

y_pred=tree_clf.predict(X_test)

from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
print(accuracy_score(y_test,y_pred))
print(classification_report(y_test,y_pred))

 完整代码:

import pandas as pd
data =pd.read_csv("train.csv")

data.Age.fillna(data.Age.median(),inplace=True)
data.Embarked.fillna('S',inplace=True)

data.Sex=data.Sex.map({'female':0,'male':1})
embarked_d=pd.get_dummies(data.Embarked,prefix='Embarked',drop_first=True)
data=pd.concat([data,embarked_d],axis=1)

feature_cols=['Pclass','Sex','Age','Embarked_Q','Embarked_S']
X=data[feature_cols]
y=data.Survived

from sklearn.tree import DecisionTreeClassifier
treeclf = DecisionTreeClassifier(max_depth=3,random_state=1)
treeclf.fit(X,y)

import graphviz
from sklearn import tree
from graphviz import Digraph
dot_data = tree.export_graphviz(treeclf,out_file=None,feature_names=feature_cols,class_names='Survived',filled=True,rounded=True,special_characters=True)
graph=graphviz.Source(dot_data)
graph



pd.DataFrame({'feature':feature_cols,'importance':treeclf.feature_importances_})
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7, test_size=0.3, random_state=4)

from sklearn.model_selection import GridSearchCV
from sklearn.tree import DecisionTreeClassifier

parameters = {'max_depth':[1,3,5,10,15,20,30]}
tree_clf=GridSearchCV(DecisionTreeClassifier(),param_grid=parameters,scoring='accuracy')
tree_clf.fit(X_train,y_train)


print(tree_clf.best_params_)
print(tree_clf.best_score_)

y_pred=tree_clf.predict(X_test)
from sklearn.metrics import accuracy_score
print(accuracy_score(y_test,y_pred))
print(classification_report(y_test,y_pred))

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猿童学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值