探索未知.预测未来------利用机器学习(CART)预测合格率

本文探讨了机器学习的历史和发展,强调了深度学习在图像和语音识别中的重要性。介绍了CART分析法在Minitab中的应用,用于预测过程输出和提高产品质量。通过设置误分类成本、验证方法和节点分裂方式,CART帮助建立分类模型,并通过ROC曲线评估模型性能。
摘要由CSDN通过智能技术生成

人类一直试图让机器具有智能,也就是人工智能(Artificial Intelligence)。从上世纪50年代,人工智能的发展经历了“推理期”,通过赋予机器逻辑推理能力使机器获得智能,当时的AI程序能够证明一些著名的数学定理,但由于机器缺乏知识,远不能实现真正的智能。因此,70年代,人工智能的发展进入“知识期”,即将人类的知识总结出来教给机器,使机器获得智能。 无论是“推理期”还是“知识期”,机器都是按照人类设定的规则和总结的知识运作,永远无法超越其创造者,其次人力成本太高。于是,一些学者就想到,如果机器能够自我学习问题不就迎刃而解了吗!机器学习(Machine Learning)方法应运而生,人工智能进入“机器学习时期”。机器学习的核心是“使用算法解析数据,从中学习,然后对世界上的某件事情做出决定或预测”。机器学习最大的突破是2006年的深度学习。深度学习是一类机器学习,目的是模仿人脑的思维过程,经常用于图像和语音识别。深度学习的出现导致了我们今天使用的(可能是理所当然的)许多技术。当你问你的iPhone关于今天的天气时,你的话语会用一种复杂的语音解析算法进行分析。如果没有深度学习,这一切都是不可能的。

机器学习与统计区别

 

机器学习是一类算法的总称

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值