codeforces 1253 E - Antenna Coverage DP区间覆盖的最小扩展次数

题目链接:https://codeforces.com/contest/1253/my
题目大意:

m个天线,每个天线的位置是xi,分数是si,覆盖范围是[xi−si;xi+si],每个硬币可以使一个天线的si+1,求覆盖整个[1;m]的最少硬币

思路:
在这里插入图片描述

#include <bits/stdc++.h>
using namespace std;
const int N = 200100;
int f[N],s[N],x[N];
int main()
{
    int n,m;
    cin >> n >> m;
    for (int i = 1; i <= m; i++){
        f[i]=1<<30;
    }
    f[0] = 0;
    for (int i = 1; i <= n; i++)
    {
        cin >> x[i] >> s[i];
    }
    for (int i = 1; i<= m; i++){
        for (int j = 1; j <= n;j++){
            if ( i >= x[j])
            {
                f[i] = min(f[i],f[max(2*x[j]-i-1,0)]+max(i-x[j]-s[j],0));
                f[i] = min(f[i], max(2*x[j]-i-1,0)+max(i-x[j]-s[j],0));
            }
            else
            {
                f[i] = min(f[i],f[max(x[j]-s[j]-1,0)]);
                f[i] = min(f[i],max(x[j]-s[j]-1,0));
            }
        }
    }
    cout << f[m] << endl;

    return 0;
}
引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值