62. 不同路径

62. 不同路径

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

问总共有多少条不同的路径?
这里写图片描述

例如,上图是一个7 x 3 的网格。有多少可能的路径?

说明:m 和 n 的值均不超过 100。

示例 1:

输入: m = 3, n = 2
输出: 3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向右 -> 向下
2. 向右 -> 向下 -> 向右
3. 向下 -> 向右 -> 向右

示例 2:

输入: m = 7, n = 3
输出: 28

思路

必须要向下走n-1格向右走m-1格,第一时间想到的是 Cmn+m2 C n + m − 2 m 个排列组合,思路是没有错,但是后面的计算出现了很多问题。

第一个程序

完全的按照 Cmn+m2 C n + m − 2 m 来计算,求它的阶乘再相除,结果就是用了long long也还是超出了数值范围,导致结果不正确。

class Solution {
public:
    int uniquePaths(int m, int n) {
        --m;--n;
        if(m==0){return n;}
        if(n==0){return m;}
        int res = CNM(n+m,n);
        return res;
    }

    long CNM(int t,int n){
        if(n==0){return t;}
        long long res1 = ANM(t);
        long long res2 = ANM(n);
        long long res3 = ANM(t-n);

        return res1/(res2*res3);
    }

    long long ANM(int x){
        if(x<=1){return 1;}
        return x*ANM(x-1);
    }
};
第二个程序

想到可以转换C(n, k) = C(n-1, k-1) + C(n-1, k),于是用了递归来计算组合,想了下全是加法应该没有问题,但是最后还是超时了。

class Solution {
public:
    int uniquePaths(int m, int n) {//C(n, k) = C(n-1, k-1) + C(n-1, k),
        --m;--n;
        if(m==0||n==0){return 1;}

        int res = CNM(n+m,n);
        return res;
    }

    long CNM(int t,int n){
        if(n==0){return 1;}
        if(t==n){return 1;}

        return CNM(t-1,n-1)+CNM(t-1,n);
    }

};
第三个程序

还得用我们老祖宗的东西来做,杨辉三角:
这里写图片描述

第n行的m个数可表示为 C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。刚好就是题目所要求的一模一样。

class Solution {
public:
    int uniquePaths(int m, int n) {
        if (m == 0 || n == 0) {
            return 0;
        }
        vector<vector<int>> path(m,vector<int>(n,0));
        for (int i = 0; i < m; i++)
            path[i][0] = 1;
        for (int i = 0; i < n; i++)
            path[0][i] = 1;
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                path[i][j] = path[i-1][j] + path[i][j-1];
            }
        }
        return path[m-1][n-1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值