各类常用统计检验

P与SIG值

p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联 是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成 的。就是在这个样本集下,出现这种情况的概率,有的也写成统计显著性(sig)。

假设检验的两类错误

第一类错误:H0假设是真实正确的,但是假设检验却拒绝了H0;反第一类错误的原因是小概率事件也有可能发生,因此第一类错误发生的概率就是小概率事件发生的概率 α \alpha α
第二类错误:H0假设是错误的,但是假设检验却接受了H0;产生原因是在一次抽样检验中没有发生不合理的结果。
我们希望两者的错误率越小越好,但是两者是一个此消彼长的关系,因为若减小 α \alpha α那么第一类错误发生的概率减小了,但是假设检验判断为接受H0假设的概率增大了,所以第二类错误发生的概率增大了;反之一样。

U检验与T检验

单正态总体均值检验

理论上要求样本来自正态分布总体。但在实用时,只要样本例数n较大(利用中心极限定理),或n小但总体标准差σ已知时,就可应用u检验;n小且总体标准差σ未知时,可应用t检验,但要求样本来自正态分布总体。两样本均数比较时还要求两总体方差相等。

单正态总体均值和方差检验

知道总体方差 σ 2 \sigma^{2} σ2,检测总体均值 μ \mu μ:
X ˉ \bar{X} Xˉ为样本均值, μ 0 \mu_{0} μ0是一已知常数;
H0: μ = μ 0 \mu=\mu_{0} μ=μ0;
这时候采用U统计量:
U = X ˉ − μ 0 σ n ∼ N ( 0 , 1 ) U=\frac{\bar{X}-\mu_{0}}{\frac{\sigma}{\sqrt{n}}}\sim N(0,1) U=n σXˉμ0N(0,1)
双边检验拒绝域在正态分布两端。
不知道总体方差 σ 2 \sigma^{2} σ2,检测总体均值 μ \mu μ:
S是样本标准差;用T统计量:
T = X ˉ − μ 0 S n ∼ t ( n − 1 ) T=\frac{\bar{X}-\mu_{0}}{\frac{S}{\sqrt{n}}}\sim t(n-1) T=n SXˉμ0t(n1)
双边检验拒绝域在t分布两端。
总体方差检验
不管 μ \mu μ知不知道,都可以用卡方检验,设 σ 0 \sigma_{0} σ0为已知常数, σ 2 \sigma^{2} σ2为要检测得总体方差,H0: σ = σ 0 \sigma=\sigma_{0} σ=σ0
只不过统计量形式有不同:
已知时: χ 2 = 1 σ 0 2 ∑ i = 1 n ( X i − μ ) 2 ∼ χ ( n ) \chi ^{2}=\frac{1}{\sigma^{2}_{0}}\sum_{i=1}^{n}(X_{i}-\mu)^{2}\sim \chi(n) χ2=σ021i=1n(Xiμ)2χ(n)
未知时: χ 2 = 1 σ 0 2 ∑ i = 1 n ( X i − X ˉ ) 2 = ( n − 1 ) S 2 σ 0 2 ∼ χ ( n − 1 ) \chi ^{2}=\frac{1}{\sigma^{2}_{0}}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}=\frac{(n-1)S^{2}}{\sigma^{2}_{0}}\sim \chi(n-1) χ2=σ021i=1n(XiXˉ)2=σ02(n1)S2χ(n1)

两个正态总体均值和方差检验

两个样本集合X、Y;
知道总体方差 σ X 2 , σ Y 2 \sigma^{2}_{X},\sigma^{2}_{Y} σX2,σY2,检测两总体均值是否相等:
H0: μ X = μ Y \mu _{X}=\mu_{Y} μX=μY
利用U统计量:
U = X ˉ − Y ˉ σ X 2 n X + σ Y 2 n Y ∼ N ( 0 , 1 ) U=\frac{\bar{X}-\bar{Y}}{\sqrt{\frac{\sigma _{X}^{2}}{n_{X}}+\frac{\sigma _{Y}^{2}}{n_{Y}}}}\sim N(0,1) U=nXσX2+nYσY2 XˉYˉN(0,1)
未知道总体方差,但是知道两个方差相等,检测两总体均值是否相等:
T = X ˉ − Y ˉ S 1 n X + 1 n Y ∼ t ( n X + n Y − 2 ) T=\frac{\bar{X}-\bar{Y}}{S\sqrt{\frac{1}{n_{X}}+\frac{1}{n_{Y}}}}\sim t(n_{X}+n_{Y}-2) T=SnX1+nY1 XˉYˉt(nX+nY2)
未知道总体方差,检测两总体均值是否相等:
T = X ˉ − Y ˉ S w 1 n X + 1 n Y ∼ t ( n X + n Y − 2 ) T=\frac{\bar{X}-\bar{Y}}{S_{w}\sqrt{\frac{1}{n_{X}}+\frac{1}{n_{Y}}}}\sim t(n_{X}+n_{Y}-2) T=SwnX1+nY1 XˉYˉt(nX+nY2)
其中: S w = ( n X − 1 ) S X 2 + ( n Y − 1 ) S Y 2 n X + n Y − 2 S_{w}=\sqrt{\frac{(n_{X}-1)S_{X}^{2}+(n_{Y}-1)S_{Y}^{2}}{n_{X}+n_{Y}-2}} Sw=nX+nY2(nX1)SX2+(nY1)SY2

两正态总体得方差检验

与单个得检验不同,这里要用到F检验;
F = 1 n X ∑ i = 1 n X ( X i − X ˉ ) 1 n Y ∑ i = 1 n Y ( Y i − Y ˉ ) = S X 2 S Y 2 ∼ F ( n X − 1 , n m − 1 ) F=\frac{\frac{1}{n_{X}}\sum_{i=1}^{n_{X}}(X_{i}-\bar{X})}{\frac{1}{n_{Y}}\sum_{i=1}^{n_{Y}}(Y_{i}-\bar{Y})}=\frac{S_{X}^{2}}{S_{Y}^{2}}\sim F(n_{X}-1,n_{m}-1) F=nY1i=1nY(YiYˉ)nX1i=1nX(XiXˉ)=SY2SX2F(nX1,nm1)

统计中经常会用到各种检验,如何,知道何时用什么检验呢:

t检验有单样本t检验,配对t检验和两样本t检验。
单样本t检验: 是用样本均数代表的未知总体均数和已知总体均数进行比较,来观察此组样本与总体的差异性。
配对t检验: 是采用配对设计方法观察以下几种情形,1,两个同质受试对象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受试对象处理前后。
可能会感觉和两个正态总体均值的t检验一样,主要的区别就是这里的两个样本数据是具有一定的相关性的,主要检验的是不同的状态下的均值是否相等;而且要求两个样本数据数量相同,并且一一对应,这样计算他们的差值,得到一组差值数据,再运用单样本t检验,检验该组差值的均值是否为0.
u检验: t检验和就是统计量为t,u的假设检验,两者均是常见的假设检验方法。当样本含量n较大时,样本均数符合正态分布,故可用u检验进行分析。当样本含量n小时,若观察值x符合正态分布,则用t检验(因此时样本均数符合t分布),当x为未知分布时应采用秩和检验。

F检验又叫方差齐性检验 在两样本t检验中要用到F检验。
从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。若两总体方差相等,则直接用t检验,若不等,可采用t’检验或变量变换或秩和检验等方法。
其中要判断两总体方差是否相等,就可以用F检验。 
简单的说就是检验两个样本的方差是否有显著性差异这是选择何种T检验(等方差双样本检验,异方差双样本检验)的前提条件。
在t检验中,如果是比较大于小于之类的就用单侧检验,等于之类的问题就用双侧检验。 
卡方检验 
是对两个或两个以上率(构成比)进行比较的统计方法,在临床和医学实验中应用十分广泛,特别是临床科研中许多资料是记数资料,就需要用到卡方检验。

方差分析
比较多个样本均数;

方差分析和F检验的联系

方差分析常用的有单因素和双因素的方差分析,查了很多资料,很多都说方差分析就是F检验,但是有些课本上又不是这样,最后以我的理解,方差分析是检验某个(某几个)因素对样本数据是否有影响,而里面最终用到的检验就是F检验,也就是说,方差分析里面用到了F检验,并不是说方差分析就是F检验。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值