总时间限制: 1000ms 内存限制: 1024kB
描述
二叉搜索树在动态查表中有特别的用处,一个无序序列可以通过构造一棵二叉搜索树变成一个有序序列,构造树的过程即为对无序序列进行排序的过程。每次插入的新的结点都是二叉搜索树上新的叶子结点,在进行插入操作时,不必移动其它结点,只需改动某个结点的指针,由空变为非空即可。
这里,我们想探究二叉树的建立和序列输出。
输入
只有一行,包含若干个数字,中间用空格隔开。(数字可能会有重复)
输出
输出一行,对输入数字建立二叉搜索树后进行前序周游的结果。
样例输入
41 467 334 500 169 724 478 358 962 464 705 145 281 827 961 491 995 942 827 436
样例输出
41 467 334 169 145 281 358 464 436 500 478 491 724 705 962 827 961 942 995
分析
这是有关二叉搜索树+先序遍历的题目
二叉搜索树
二叉搜索树(Binary Search Tree,简称BST)是一种特殊的二叉树,它的每个节点最多有两个子节点,并且满足以下条件:
- 左子树上所有节点的值小于根节点的值;
- 右子树上所有节点的值大于根节点的值;
- 对于相同的值不会出现两次;
- 左右子树也都是二叉搜索树。
先序遍历
先序遍历是一种二叉树的遍历方式,也称为前序遍历。具体过程如下:
访问根节点;
递归地先序遍历左子树;
递归地先序遍历右子树。
先序遍历的顺序是根节点->左子树->右子树。
Code
写法1
#include <bits/stdc++.h>
using namespace std;
struct TreeNode {
int data;
TreeNode *L;
TreeNode *R;
};
void addNode(TreeNode **T, int data) {
if(!*T) {
*T = (TreeNode*)malloc(sizeof(TreeNode));
(*T)->data = data;
(*T)->L = (*T)->R = NULL;
} else {
TreeNode *p = *T;
while(p) {
if(data > p->data) {
if(p->R) p = p->R;
else break;
} else if(data < p->data) {
if(p->L) p = p->L;
else break;
} else if(data == p->data) {
goto out;
}
}
if(data > p->data) {
p->R = (TreeNode*)malloc(sizeof(TreeNode));
p = p->R;
p->data = data;
p->L = p->R = NULL;
} else if(data < p->data) {
p->L = (TreeNode*)malloc(sizeof(TreeNode));
p = p->L;
p->data = data;
p->L = p->R = NULL;
}
out:;
}
}
void readTree(TreeNode *T) {
stack<TreeNode*> S;
TreeNode *p = T;
while(p || !S.empty()) {
if(p) {
printf("%d ", p->data);
S.push(p);
p = p->L;
} else if(!p) {
p = S.top()->R;
S.pop();
}
}
}
int main() {
TreeNode *T = NULL;
int num;
while(cin >> num){
addNode(&T, num);
}
readTree(T);
}
写法2
#include <bits/stdc++.h>
using namespace std;
struct TreeNode {
int data;
TreeNode *L;
TreeNode *R;
};
void addNode(TreeNode **T, int data) {
if(!*T) {
*T = (TreeNode*)malloc(sizeof(TreeNode));
(*T)->data = data;
(*T)->L = (*T)->R = NULL;
} else {
TreeNode *p = *T;
while(p) {
if(data > p->data) {
if(p->R) p = p->R;
else break;
} else if(data < p->data) {
if(p->L) p = p->L;
else break;
} else if(data == p->data) {
goto out;
}
}
if(data > p->data) {
p->R = (TreeNode*)malloc(sizeof(TreeNode));
p = p->R;
p->data = data;
p->L = p->R = NULL;
} else if(data < p->data) {
p->L = (TreeNode*)malloc(sizeof(TreeNode));
p = p->L;
p->data = data;
p->L = p->R = NULL;
}
out:;
}
}
void readTree(TreeNode *T) {
stack<TreeNode*> S;
TreeNode *p = T;
while (p) {
printf("%d ", p->data);
if (p->L) {
S.push(p);
p = p->L;
} else if (p->R) p = p->R;
else {
while (!S.empty() && !p->R) {
p = S.top();
S.pop();
}
if (p->R) p = p->R;
else break;
}
}
}
int main() {
TreeNode *T = NULL;
int num;
while(cin >> num){
addNode(&T, num);
}
readTree(T);
}
注意
一般情况下,对于这样的题目,应当用while(cin >> num)
来控制输入,因为题目没有给出具体的输入的数的数量。