1. Anaconda3安装
2. 开始安装Tensorflow
第一步和第二步Anaconda3的安装和tensorflow的安装网上教程比较多,暂时先不介绍,后续再更新
3. 安装各种依赖包
conda install -c anaconda protobuf
pip install lxml
pip install Cython
pip install contextlib2
pip install jupyter
pip install matplotlib
pip install pandas
pip install opencv-python
pip install Pillow
在安装的过程中可能速度会比较慢,这里推荐大家用清华源来安装,使用方法,例如安装 Pillow
pip install Pillow -i https://pypi.tuna.tsinghua.edu.cn/simple
用参数-i来指定源,这样速度快很多。
4.安装TensorFlow Object Detection API
(1)下载TensorFlow Object Detection API
目前tensorflow2.0的API还是有些问题,推荐大家下载 tensorflow1.x系列的api
链接:https://pan.baidu.com/s/1_W4ahFmGLF-TlbAAf2SyZA
提取码:2tua
附百度网盘的地址
将下载后的压缩包解压,修改原来的名称models-master为models,完成目录如下图所示:
(2)添加PYTHONPATH到当前用户的环境变量下
sudo gedit ~/.bashrc
在文件末尾添加
export PYTHONPATH=/home/zhao/setup/caffe-master/python:/home/zhao/setup/mypy:$PYTHONPATH
绿色替换成自己的路径
保存后在终端输入 source ~/.bashrc 使环境变量立即生效
可以新打开一个终端测试添加是否成功:
(3)安装COCO API
在终端,用命令进入目录~/machine-learning/models/research目录下,
git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
make
cp -r pycocotools <path_to_tensorflow>/models/research/
(4)编译Protobuf
cd ~/tensorflow/models/research/
protoc object_detection/protos/*.proto --python_out=.
(5)在\models\research目录中执行
python3 setup.py build
python3 setup.py install
测试
python3 object_detection/builders/model_builder_test.py
备注:
如果运行时出现 ModuleNotFoundError: No module named 'pycocotools'
采用以下方法:
cd cocoapi/PythonAPI
# install pycocotools locally
python3 setup.py build_ext --inplace
# install pycocotools to the Python site-packages
python3 setup.py build_ext install
如果运行时出现ModuleNotFoundError: No module named 'nets'
1删除*/research/slim下的BUILD文件
2运行命令:
在*/research/slim下运行命令
python3 setup.py build
python3 setup.py install
3再次运行测试命令
在research下运行:python3 object_detection/builders/model_builder_test.py
出现OK说明成功了: