Ubuntu 18.04下安装TensorFlow Object Detection API(对象检测API)

1. Anaconda3安装

2. 开始安装Tensorflow

     第一步和第二步Anaconda3的安装和tensorflow的安装网上教程比较多,暂时先不介绍,后续再更新

3. 安装各种依赖包

    conda install -c anaconda protobuf
	pip install lxml
	pip install Cython
	pip install contextlib2
	pip install jupyter
	pip install matplotlib
	pip install pandas
	pip install opencv-python
	pip install Pillow

在安装的过程中可能速度会比较慢,这里推荐大家用清华源来安装,使用方法,例如安装 Pillow

pip install Pillow -i https://pypi.tuna.tsinghua.edu.cn/simple

用参数-i来指定源,这样速度快很多。

4.安装TensorFlow Object Detection API

(1)下载TensorFlow Object Detection API

目前tensorflow2.0的API还是有些问题,推荐大家下载 tensorflow1.x系列的api

链接:https://pan.baidu.com/s/1_W4ahFmGLF-TlbAAf2SyZA
提取码:2tua

附百度网盘的地址

将下载后的压缩包解压,修改原来的名称models-master为models,完成目录如下图所示:

 (2)添加PYTHONPATH到当前用户的环境变量下

   sudo gedit ~/.bashrc

 在文件末尾添加

  export PYTHONPATH=/home/zhao/setup/caffe-master/python:/home/zhao/setup/mypy:$PYTHONPATH

 绿色替换成自己的路径

  保存后在终端输入 source ~/.bashrc 使环境变量立即生效

可以新打开一个终端测试添加是否成功:

(3)安装COCO API

 在终端,用命令进入目录~/machine-learning/models/research目录下,

git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
make
cp -r pycocotools <path_to_tensorflow>/models/research/

(4)编译Protobuf

cd ~/tensorflow/models/research/
protoc object_detection/protos/*.proto --python_out=.

(5)在\models\research目录中执行

python3 setup.py build
python3 setup.py install

 测试

python3 object_detection/builders/model_builder_test.py

 

 

备注:

如果运行时出现 ModuleNotFoundError: No module named 'pycocotools'

采用以下方法:

cd cocoapi/PythonAPI
# install pycocotools locally
python3 setup.py build_ext --inplace

# install pycocotools to the Python site-packages
python3 setup.py build_ext install

如果运行时出现ModuleNotFoundError: No module named 'nets'

1删除*/research/slim下的BUILD文件

2运行命令:
在*/research/slim下运行命令

python3 setup.py build
python3 setup.py install

3再次运行测试命令
在research下运行:python3 object_detection/builders/model_builder_test.py
出现OK说明成功了:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值