剑指offer之和为S的两个数字 vs 和为S的连续正数序列

一、和为S的两个数字

题目描述

输入一个递增排序的数组和一个数字S,在数组中查找两个数,是的他们的和正好是S,如果有多对数字的和等于S,输出两个数的乘积最小的。
输出描述:对应每个测试案例,输出两个数,小的先输出。

解题思路

数列满足递增,设两个头尾两个指针i和j,
若ai + aj == sum,就是答案(相差越远乘积越小)
若ai + aj > sum,aj肯定不是答案之一(前面已得出 i 前面的数已是不可能),j -= 1
若ai + aj < sum,ai肯定不是答案之一(前面已得出 j 后面的数已是不可能),i += 1
时间复杂度为O(n)

参考代码

class Solution {
public:
    vector<int> FindNumbersWithSum(vector<int> array,int sum) {
        vector<int> res;
        if(array.size() < 2)
            return res;
        int i = 0;
        int j = array.size()-1;
        while(i < j){
            if(array[i] + array[j] == sum){
                res.push_back(array[i]);
                res.push_back(array[j]);
                break;
            }
            else if(array[i] + array[j] > sum){
                j--;
            }
            else
                i++;
        }
        return res;
    }
};

二、和为S的连续正数序列

题目描述

小明很喜欢数学,有一天他在做数学作业时,要求计算出9~16的和,他马上就写出了正确答案是100。但是他并不满足于此,他在想究竟有多少种连续的正数序列的和为100(至少包括两个数)。没多久,他就得到另一组连续正数和为100的序列:18,19,20,21,22。现在把问题交给你,你能不能也很快的找出所有和为S的连续正数序列? Good Luck!
输出描述:输出所有和为S的连续正数序列。序列内按照从小至大的顺序,序列间按照开始数字从小到大的顺序

解题思路

方法一:

有了前面的经验,我们也考虑用两个树small和big分别表示序列的最小值和最大值。首先把small初始化为1,big初始化为2.如果从small到big的序列的和大于s,我们可以从序列中去掉较小的值,也就是增大small的值。如果从small到big的序列的和小于s,我们可以增大big,让这个序列包含更多的数字。因为这个序列至少要有两个数字,我们一直增加small 到(1+s)/2为止。

以求和为9 的所有连续序列为例,我们先把small 初始化为1, big 初始化为2。此时介于small 和big 之间的序列是{1,2},序列的和为3,小于9,所以我们下一步要让序列包含更多的数字。我们把big 增加1 变成3,此时序列为{ I,2,3 }。由于序列的和是6,仍然小于9,我们接下来再增加big 变成4,介于small 和big 之间的序列也随之变成{ l, 2, 3, 4}。由于列的和10 大于9,我们要删去去序列中的一些数字, 于是我们增加small 变成2,此时得到的序列是{2, 3, 4}, 序列的和正好是9。我们找到了第一个和为9 的连续序列,把它打印出来。接下来我们再增加small和big,重复前面的过程,可以找到第二个和为9 的连续序列{4,5}。

参考代码

class Solution {
public:
    vector<vector<int> > FindContinuousSequence(int sum) {
        vector<vector<int>> res;
        if(sum <= 1)
            return res;
        int small = 1;
        int big = 2;
        while(small != (1 + sum) / 2){
            int curSum = (small + big)*(big - small + 1) / 2;
            if(curSum == sum){
                vector<int> oneList;
                for(int i = small;i <= big;i++)
                    oneList.push_back(i);
                res.push_back(oneList);
                small++;
                big++;
            }
            else if(curSum < sum)
                big++;
            else
                small++;
        }
        return res;
    }
};

方法二:

设有a个连续的正整数,从b(b>0)开始,和为S。
b + b + 1 + b + 2 + … + b + a -1 = S
ab + a(a-1)/2 = S
a(2b + a - 1) = 2S
因为a,b属于整数,所以2S能整除a
所以枚举2S的约数记为a,时间复杂度O(√S),b=1/2(2S/a+1-a),判断b是否属于整数,时间复杂度O(1)。

public class Solution {
    public ArrayList<ArrayList<Integer>> FindContinuousSequence(int sum) {
        ArrayList<ArrayList<Integer>> res = new ArrayList<ArrayList<Integer>>();
        for(int a = 2; a * a < 2 * sum; a ++){ //有a个连续的整数
            if(2*sum % a == 0){//a是2*sum的约数
                if((2*sum + a - a*a) / (2 * a) > 0 && (2*sum + a - a*a) % (2 * a) == 0){
                    ArrayList<Integer> al = new ArrayList<Integer>();
                    for(int i = (2*sum + a - a*a) / (2 * a); i < ((2*sum + a - a*a) / (2 * a) + a); i ++){
                        al.add(i);
                    }
                    res.add(0, al);
                }
            }
        }   
        return res;
    }
}
阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页