KNN |
K-Means |
目的是为了确定一个点的分类 |
目的是为了将一系列点集分成k类 |
KNN是分类算法 |
K-Means是聚类算法 |
监督学习,分类目标事先已知 |
非监督学习,将相似数据归到一起从而得到分类,没有外部分类 |
训练数据集有label,已经是完全正确的数据 |
训练数据集无label,是杂乱无章的,经过聚类后才变得有点顺序,先无序,后有序 |
没有明显的前期训练过程,属于memory-based learning |
KNN分类(K近邻)与K-Means聚类(K均值)的区别
最新推荐文章于 2025-03-03 21:36:18 发布