机器学习
文章平均质量分 77
七夕哒
啦啦啦,这个人很帅但是很懒
展开
-
机器学习(一)——线性回归的梯度下降算法和正规方程法
机器学习(一)——线性回归的梯度下降算法和正规方程法 线性回归 机器学习基本分为有监督学习和无监督学习。 有监督学习基本分为回归问题和分类问题。 回归问题很简单,就是根据样本预测一个连续数的值,类似于模拟信号的预测吧,结果是0.1还是0.2呀,明天降雨量是500mm还是501mm呀。 分类问题自然就是数字信号的预测了,结果是0还是1呀,明天下午还是不下雨呀,这种。 回归问题可以...原创 2018-04-14 22:09:03 · 1024 阅读 · 0 评论 -
机器学习(二)——Logistic Regression 解决分类问题的回归函数
机器学习(二)——Logistic Regression 1、hypothesis,假设函数 问题的引入是通过这个图片 这个图好像是在说,肿瘤小的时候就是良性的,大的时候就是恶性的。所以使用线性回归构造一个图中的直线没有任何问题。但是当数据没有这么整齐的时候,如果有个例大的肿瘤也是良性,这个预测方式就不对了。 所以需要构造一个模型来进行分类,需要将线性回归的结果进行变换,使y值...原创 2018-07-17 19:00:37 · 448 阅读 · 0 评论 -
机器学习(三)——神经网络初识
机器学习(三)——神经网络初识   用前面的两种方法理论上可以解决所有问题了,通过构造多项式的方法可以将线性问题扩展到非线性问题上。   而问题越复杂,需要构造的多项式就越多,假设只有10个特征,需要构造3次方的多项式,那也有27个多项式,而如果是对应更多特征,更高次方的多项式,那么就更加复杂了。   所以就会用到神经网络,用来...原创 2018-07-24 10:27:36 · 278 阅读 · 0 评论 -
机器学习(四)——神经网络反向传播细节
机器学习(四)——神经网络反向传播细节 上一篇讲了个神经网络结构,它具体怎么用,怎么算就算这一篇。 神经网络的用法就算下面这几步: 1、正向传播,计算h(X),就是根据随机给的权重计算出一个结果; 2、反向传播,修正权重,也就是θ矩阵,使得代价函数最小; 3、预测数据,前面两步都是训练,这一步就是使用训练好的网络进行结果的预测。 首先,需要铺垫一些东西。 1...原创 2018-07-27 17:22:46 · 468 阅读 · 0 评论