BZOJ 2301

BZOJ 2301

文章来自我的新博客

Description:

      N 组数据,每组输入 a,b,c,d,K ,输出 bi=adi=c[gcd(i,j)==K] N<=500000,1<=a<=b<=50000,1<=c<=d<=50000,K<=50000
      
      

Solution:

      首先,根据容斥原理,我们令 Ans(N,M)表示 a=c=1,b=N,d=M 时的答案,那么最后所求为Ans(b,d)Ans(a1,d)Ans(c,b1)+Ans(a1,b1) 所以我们考虑如何求 Ans(N,M) (根据对称性,Ans(N,M)=Ans(M,N),所以我们可以使得 N<=M)

      Ans(N,M)=Ni=1Mj=1[gcd(i,j)==K]=NKi=1MKj=1[gcd(i,j)==1]

      然后莫比乌斯反演有:Ans(N,M)=NKd=1μ(d)NdKMdK

      但是,时间复杂度过不了。。。这时候我们考虑优化。由于NKd=NdK,所以我们考虑用常用技巧,由于NK的取值只有 N 个,然后取值相同时 μ(d)NdKMdK 的结果是一样的,我们可以将时间复杂度从 O(Nlog2N)降低到 O(Nlog2N) 然后就愉快的 AC 了。
      
      

Code:

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <iostream>

using namespace std;

long long A,B,C,D,K;
int mu[50010]={0};
int hash[50010]={0};
int prime[50010]={0};
int pp=0;

void Pre_()
{
    mu[1]=1;
    for(int i=2;i<=50000;i++)
    {
        if(hash[i]==0)
        {
            prime[++pp]=i;
            mu[i]=-1;
        }
        for(int j=1;j<=pp && i*prime[j]<=50000;j++)
        {
            hash[i*prime[j]]=1;
            if(i%prime[j]==0)
            {
                mu[i*prime[j]]=0;
                break;
            }
            mu[i*prime[j]]=-mu[i];
        }
        mu[i]+=mu[i-1];
    }
    return;
}

long long Calc(long long N,long long M)
{
    if(N>M) swap(N,M);
    long long returnd=0;
    int last=0;
    for(int i=1;i<=N;i=last+1)
    {
        long long T1=N/i,T2=M/i;
        last=min(N/T1,M/T2);
        returnd+=(mu[last]-mu[i-1])*T1*T2;
    }
    return returnd;
}

int main()
{
    int T;
    cin>>T;
    Pre_();
    for(;T>0;T--)
    {
        int a,b,c,d,k;
        scanf("%d%d%d%d%d",&a,&c,&b,&d,&k);
        A=a,B=b,C=c,D=d,K=k;
        long long ans=Calc(C/K,D/K)-Calc((A-1)/K,D/K)-Calc(C/K,(B-1)/K)+Calc((A-1)/K,(B-1)/K);
        printf("%lld\n",ans);
    }
    return 0;
}
发布了88 篇原创文章 · 获赞 0 · 访问量 6万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览