Container killed on request. Exit code is 143

原因:程序运行时所需内存 > memory。一般是因为处理数据量或者缓存的数据量较大,已有内存不足 并且内存分配速度 > GC回收速度导致。

解决方案:增大memory、减少单个Executor的并发数(cores)、减少不必要的cache操作、尽量不要对比较大的数据做broadcast、尽量避免shuffle算子或者对程序逻辑/底层数据进行优化

2025-04-02 11:24:49,591 ERROR org.apache.spark.scheduler.cluster.YarnScheduler: Lost executor 5 on dominos-usdp-v3-pro02: Container from a bad node: container_e35_1709867558487_220002_02_000002 on host: dominos-usdp-v3-pro02. Exit status: 143. Diagnostics: [2025-04-02 11:24:49.169]Container killed on request. Exit code is 143 [2025-04-02 11:24:49.170]Container exited with a non-zero exit code 143. [2025-04-02 11:24:49.170]Killed by external signal . 2025-04-02 11:24:49,592 WARN org.apache.spark.scheduler.TaskSetManager: Lost task 0.0 in stage 2.0 (TID 5) (dominos-usdp-v3-pro02 executor 5): ExecutorLostFailure (executor 5 exited caused by one of the running tasks) Reason: Container from a bad node: container_e35_1709867558487_220002_02_000002 on host: dominos-usdp-v3-pro02. Exit status: 143. Diagnostics: [2025-04-02 11:24:49.169]Container killed on request. Exit code is 143 [2025-04-02 11:24:49.170]Container exited with a non-zero exit code 143. [2025-04-02 11:24:49.170]Killed by external signal . 2025-04-02 11:24:49,594 WARN org.apache.spark.scheduler.cluster.YarnSchedulerBackend$YarnSchedulerEndpoint: Requesting driver to remove executor 5 for reason Container from a bad node: container_e35_1709867558487_220002_02_000002 on host: dominos-usdp-v3-pro02. Exit status: 143. Diagnostics: [2025-04-02 11:24:49.169]Container killed on request. Exit code is 143 [2025-04-02 11:24:49.170]Container exited with a non-zero exit code 143. [2025-04-02 11:24:49.170]Killed by external signal . 2025-04-02 11:26:37,187 ERROR org.apache.spark.scheduler.cluster.YarnScheduler: Lost executor 6 on dominos-usdp-v3-pro03: Container from a bad node: container_e35_1709867558487_220002_02_000003 on host: dominos-usdp-v3-pro03. Exit status: 143. Diagnostics: [2025-04-02 11:26:36.792]Container killed on request. Exit code is 143 [2025-04-02 11:26:36.793]Container exited with a non-zero exit code 143.
最新发布
04-03
<think>好的,我现在需要帮助用户分析他们提供的Spark错误日志。首先,用户给出的日志中有多个ERROR和WARN条目,涉及到YarnScheduler和TaskSetManager。我需要逐步分解问题,找出可能的原因和解决方案。 首先,注意到错误信息中提到了“Lost executor 5 on dominos-usdp-v3-pro02”和“Exit status: 143”。同样的情况也出现在另一个节点dominos-usdp-v3-pro03上,executor 6丢失,同样的退出码143。退出码143通常表示容器被SIGTERM信号终止,即被外部请求杀死。日志中的诊断信息也提到“Killed by external signal”,这进一步确认了这一点。 接下来,我需要考虑哪些原因会导致YARN容器被外部信号终止。可能的原因包括资源问题,比如内存或CPU超限。如果容器使用的内存超过了分配的限制,YARN的NodeManager可能会主动终止容器。这时候需要检查Spark的内存配置,比如executor内存、堆外内存等设置是否合理。 另一个可能性是节点本身的问题,比如硬件故障、磁盘空间不足、网络问题,或者节点被管理员手动下线(标记为bad node)。日志中提到了“Container from a bad node”,这可能意味着YARN将该节点标记为不健康,从而终止其上的容器。需要检查集群的健康状态,特别是dominos-usdp-v3-pro02和pro03节点是否有问题。 此外,也有可能是Spark应用程序本身的错误,比如任务长时间无响应导致超时,或者任务频繁失败触发了容器终止。需要查看应用程序的日志,特别是失败任务的堆栈跟踪,看是否有代码层面的问题。 用户可能需要检查YARN的资源管理器界面,查看对应容器的详细日志,确认具体的错误信息。同时,检查Spark的配置,比如spark.executor.memory、spark.executor.memoryOverhead是否设置合理,是否存在内存不足的情况。另外,查看集群监控,看是否有节点资源耗尽的情况,比如CPU、内存或磁盘。 还有可能考虑是否是调度策略的问题,比如资源抢占或其他任务优先级导致当前任务被终止。需要确认集群中是否有其他高优先级任务在运行,或者资源分配策略是否合理。 总结下来,解决步骤可能包括:检查节点状态,确认是否被标记为不健康;检查资源使用情况,调整Spark内存配置;查看详细日志以确定具体原因;联系集群管理员确认是否有手动干预或节点维护。 最后,用户可能需要根据这些分析步骤逐步排查问题,确保资源配置合理,节点健康,并优化应用程序以避免资源超限。</think>这个错误日志表明Spark应用程序在YARN集群上运行时遇到了执行器(Executor)异常退出的问题。以下是分步骤分析及解决方案: --- ### **1. 理解错误代码** - **Exit code 143**:表示容器被`SIGTERM`信号终止(128 + 15 = 143)。通常由以下原因触发: - 资源超限(如内存、CPU超出分配值) - 节点被标记为`bad node`(不健康节点) - 手动终止(如管理员操作或资源调度策略) --- ### **2. 关键日志分析** 日志中以下信息需要重点关注: ```plaintext Container killed on request. Exit code is 143 Killed by external signal Container from a bad node: container_e35_... on host: dominos-usdp-v3-pro02 ``` 表明YARN主动终止了容器,可能原因是: 1. 节点被标记为`bad node`(如磁盘故障、网络中断等) 2. 资源超限(内存泄漏或配置不足) --- ### **3. 常见原因排查** #### **(1) 节点健康问题** - **现象**:`Container from a bad node`表明YARN认为节点不健康。 - **检查步骤**: - 通过YARN UI查看节点状态(`http://<resource-manager>/cluster/nodes`)。 - 检查节点磁盘空间、网络连通性、硬件故障日志。 #### **(2) 内存超限** - **现象**:Executor因内存不足被YARN杀死。 - **验证方法**: - 检查Executor日志中的`java.lang.OutOfMemoryError`。 - 查看YARN容器日志中的`Physical memory used`是否超过分配值。 - **解决方案**: ```bash # 增大Executor内存(示例) spark-submit --executor-memory 8g --conf spark.executor.memoryOverhead=2g ... ``` #### **(3) 外部信号干扰** - **可能性**:集群管理工具(如Apache Ambari)或运维脚本主动终止容器。 - **检查**:联系集群管理员确认是否有维护操作。 --- ### **4. 配置优化建议** - **内存配置**: - 调整`spark.executor.memory`和`spark.executor.memoryOverhead`,确保总和小于YARN容器最大内存(`yarn.scheduler.maximum-allocation-mb`)。 - 公式:$总内存 = executor\_memory + memory\_overhead$ - **超时参数**: ```bash # 避免因GC暂停导致超时 --conf spark.network.timeout=300s \ --conf spark.executor.heartbeatInterval=60s ``` --- ### **5. 进一步诊断步骤** 1. **查看YARN容器日志**: ```bash yarn logs -applicationId <application_id> -containerId <container_id> ``` 2. **检查Spark Executor日志**: - 在对应节点的`/var/log/spark`目录下查找错误堆栈。 3. **监控工具**: - 使用Grafana/Prometheus监控节点资源使用情况。 --- ### **总结** 该错误的核心问题是**YARN主动终止了容器**,需优先排查节点健康状态和内存配置。如果问题持续,建议: 1. 联系集群管理员检查节点状态。 2. 逐步增加Executor内存并观察结果。 3. 检查应用程序代码是否存在内存泄漏(如广播变量未清理)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值