f[i]=max(f[j]+sum[i]−sum[j+1])j∈[i−k−1,i−1]
(意思是不取第j+1个元素,从j+2(除j=i-1的情况)到i全取的最优答案)
显然在普通情况下它的复杂度为
O(n2)
但是如果这是普通情况我会写这篇blog吗?!
我们可以发现j的区间大小固定且像一个”窗口”一样慢慢从左往右移动,sum[i]是固定的,那么只要求f[j]-sum[j+1]的最大值不就可以了吗?综上,我们可以用刚刚学到的单调队列维护一下,这样复杂度就成
O(n)
了
#include<bits/stdc++.h>
#define LL long long
using namespace std;
LL ans=-0x7fffffff,f[100010],sum[100010];
int head=1,tail,n,k,x;
struct os
{
LL data,num;
}q[200010];
main()
{
scanf("%d%d",&n,&k);
for (int i=1;i<=n;i++)
scanf("%d",&x),
sum[i]=sum[i-1]+(LL)x;
for (int i=0;i<=n;i++)
{
while (head<=tail&&q[head].num<i-k-1) head++;
if (i<=k) f[i]=sum[i];
else f[i]=sum[i]+q[head].data;
if (i==n) break;
while (head<=tail&&q[tail].data<=f[i]-sum[i+1]) tail--;
q[++tail].num=i;
q[tail].data=f[i]-sum[i+1];
}
printf("%lld",f[n]);
}