bzoj2442

f[i]=max(f[j]+sum[i]sum[j+1])j[ik1,i1]  
(意思是不取第j+1个元素,从j+2(除j=i-1的情况)到i全取的最优答案) 
显然在普通情况下它的复杂度为 O(n2) 但是如果这是普通情况我会写这篇blog吗?! 
我们可以发现j的区间大小固定且像一个”窗口”一样慢慢从左往右移动,sum[i]是固定的,那么只要求f[j]-sum[j+1]的最大值不就可以了吗?综上,我们可以用刚刚学到的单调队列维护一下,这样复杂度就成 O(n) 了 

#include<bits/stdc++.h>
#define LL long long
using namespace std;
LL ans=-0x7fffffff,f[100010],sum[100010];
int head=1,tail,n,k,x;
struct os
{
    LL data,num;
}q[200010];
main()
{
    scanf("%d%d",&n,&k);
    for (int i=1;i<=n;i++)
    scanf("%d",&x),
    sum[i]=sum[i-1]+(LL)x;
    for (int i=0;i<=n;i++)
    {
        while (head<=tail&&q[head].num<i-k-1) head++;
        if (i<=k) f[i]=sum[i];
        else f[i]=sum[i]+q[head].data;
        if (i==n) break;
        while (head<=tail&&q[tail].data<=f[i]-sum[i+1]) tail--;
        q[++tail].num=i;
        q[tail].data=f[i]-sum[i+1];
    }
    printf("%lld",f[n]);
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值