too young too simple

1 明辨是非
distinguish.in/.out/.cpp
1.1 问题描述
给n 组操作,每组操作形式为x y p。
当p 为1 时,如果第x 变量和第y 个变量可以相等,则输出YES,并
限制他们相等;否则输出NO,并忽略此次操作。
当p 为0 时,如果第x 变量和第y 个变量可以不相等,则输出YES,
并限制他们不相等;否则输出NO,并忽略此次操作。
1.2 输入格式
第一行为一个正整数n。
接下来n 行每行三个整数,x,y,p。
1.3 输出格式
对于n 行操作,分别输出n 行YES 或者NO。
1.4 样例输入
3
1 2 1
1 3 1
2 3 0
1.5 样例输出
YES
YES
NO
2
1.6 数据规模及约定
对于前40% 的数据,n 1000。

对于前100% 的数据,1 n 10^5,1 x; y 10^8; 0 p 1。

第一眼瞄过去、、、卧槽这不是noi原题大作战。赶紧开始撸并查集。。。然而写着写着发现不对,那个好像只要离线判断一个总约束的对错。而这个似乎也要复杂一点。然后想到可以用加权并查集,而且又不知道怎么存。。。然而好像不等号也不能传递、、、所以就开始乱来了。。。套了个map胡乱离散化了一下、、、然后乱开了set,s[i]集合表示和i祖先不相等的祖先们。如果碰到p=1x,y先判一下s[x]里有没有 y,没有的话就可以搞什么玄学的启发式合并了(我不会证明复杂度的都被我称为玄学的东西。。。)然后似乎就是两个log的样子。然后就很不利索的A掉了

#include <cstdio>  
#include <cmath>  
#include <ctime>  
#include <string>  
#include <cstring>  
#include <cstdlib>  
#include <iostream>  
#include <algorithm>  
  
#include <set> 
#include <stack>  
#include <queue>  
#include <vector>  
#include<map>
#include<list>
 
#define pb push_back 
#define lb lower_bound 
#define sqr(x) (x)*(x) 
#define lowbit(x) (x)&(-x)  
#define Abs(x) ((x) > 0 ? (x) : (-(x)))  
#define forup(i,a,b) for(int i=(a);i<=(b);i++)  
#define fordown(i,a,b) for(int i=(a);i>=(b);i--)  
#define ls(a,b) (((a)+(b)) << 1)  
#define rs(a,b) (((a)+(b)) >> 1)  
#define getlc(a) ch[(a)][0]  
#define getrc(a) ch[(a)][1]  
  
#define maxn 405
#define maxm 100005 
#define INF 1070000000  
using namespace std;  
typedef long long ll;  
typedef unsigned long long ull;  
  
template<class T> inline  
void read(T& num){  
    num = 0; bool f = true;char ch = getchar();  
    while(ch < '0' || ch > '9') { if(ch == '-') f = false;ch = getchar();}  
    while(ch >= '0' && ch <= '9') {num = num * 10 + ch - '0';ch = getchar();}  
    num = f ? num: -num;  
} 
int out[100]; 
template<class T> inline 
void write(T x,char ch){ 
 if (x==0) {putchar('0'); putchar(ch); return;} 
 if (x<0) {putchar('-'); x=-x;} 
 int num=0; 
 while (x){ out[num++]=(x%10); x=x/10;} 
 fordown(i,num-1,0) putchar(out[i]+'0'); putchar(ch); 
} 
/*========================================================*/
int n, x, y, p, cnt = 1, f[200005];
set<int> s[200005];
map<int, int> m;

int fnd(int x) {
	return f[x] == x ? x : f[x] = fnd(f[x]);
}

int main() {
	freopen("distinguish.in","r",stdin);
freopen("distinguish.out","w",stdout);
read(n);
	for(int i = 1; i <= n*2; i++) f[i] = i;
	while(n--) {
	  read(x);read(y);read(p);
		if(m[x]) x = m[x];
		else x = m[x] = ++cnt;
		if(m[y]) y = m[y];
		else y = m[y] = ++cnt;
		int u = fnd(x), v = fnd(y);
		if(p == 1) {
			if(s[u].count(v)) puts("NO");
			else if(u != v) {
				if(s[u].size() > s[v].size()) swap(u, v);
				f[u] = v;
				for(set<int>::iterator it = s[u].begin(); it != s[u].end(); it++)
					s[*it].erase(u), s[*it].insert(v), s[v].insert(*it);
				puts("YES");
			}
			else puts("YES");
		}
		else {
			if(u == v) puts("NO");
			else {
				s[u].insert(v);
				s[v].insert(u);
				puts("YES");
			}
		}
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值