1的数目

输入一个数N,从1开始,到N的所有整数,出现的“1”的个数。

例如:N = 12

1,2,3,4,5,6,7,8,9,10,11,12

1的个数是5,所以输出5

 

第一个方法就是对1到N的每个数,看每个数的每一位是否为1,是的话count+1。但这是一种低效的方法。

第二个方法是找规律:

假设N = abcde

如果是计算百位上的1出现的次数,它受到三个因素影响:百位上的数字,百位以下(低位)的数字,百位以上(更高位)的数字。

如果百位上的数字为0,百位上的1的次数由更高位决定,等于更高位的数字 * 当前位数。

        比如12013,百位出现1的情况是100~199,1100~1199,2100~2199,......,11100~11199.  等于 12 * 100

如果百位上的数字为1,受高位和低位影响

       比如12113 , 百位出现1的情况是 100~199,1100~1199,2100~2199,。。。11100~11199, 加上 12100~12113

       所以是 12 * 100 + 113 +1

如果百位上的数字大于1,百位上1的次数等于 更高位的数加1,乘以当前位数。

       例如12213, (12+1)*100

 

#include<iostream>
using namespace std;

int sum1(int n)
{
	int count = 0;//结果
	int factor = 1;//1-》10-》100...
	int lowerNum = 0;//比当前位低的低位的数字
	int curNum = 0;//当前位是几,0或1或大于1的一个个位数
	int higherNum = 0;//比当前位高的高位的数字

	while(n / factor)
	{
		lowerNum = n - (n / factor) * factor;
		curNum = (n / factor) % 10;
		higherNum = n / (factor * 10);

		switch(curNum)
		{
		case 0:
			count += higherNum * factor;
			break;
		case 1:
			count += higherNum * factor + lowerNum + 1;
			break;
		default:
			count += (higherNum + 1) *factor;
			break;
		}

		factor *= 10;
	}
	return count;
}

//一种效率低下的方法:
int count1(int n)
{
	int num = 0;
	while(n != 0)
	{
		num += (n % 10 == 1) ? 1 : 0;
		n /= 10;
	}
	return num;
}
int f(int n)
{
	int count = 0;
	for(int i = 1; i <= n; ++i)
	{
		count += count1(i);
	}
	return count;
}

int main()
{
	int num;
	cin >> num;
	int res = sum1(num);//高效的方法
	cout << res << endl;
	res = f(num);//低效的方法
	cout << res << endl;
	return 0;
}

 

N= 1 111 111 110 是满足 f(n) = n的最大整数。证明过程不懂。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值