输入一个数N,从1开始,到N的所有整数,出现的“1”的个数。
例如:N = 12
1,2,3,4,5,6,7,8,9,10,11,12
1的个数是5,所以输出5
第一个方法就是对1到N的每个数,看每个数的每一位是否为1,是的话count+1。但这是一种低效的方法。
第二个方法是找规律:
假设N = abcde
如果是计算百位上的1出现的次数,它受到三个因素影响:百位上的数字,百位以下(低位)的数字,百位以上(更高位)的数字。
如果百位上的数字为0,百位上的1的次数由更高位决定,等于更高位的数字 * 当前位数。
比如12013,百位出现1的情况是100~199,1100~1199,2100~2199,......,11100~11199. 等于 12 * 100
如果百位上的数字为1,受高位和低位影响
比如12113 , 百位出现1的情况是 100~199,1100~1199,2100~2199,。。。11100~11199, 加上 12100~12113
所以是 12 * 100 + 113 +1
如果百位上的数字大于1,百位上1的次数等于 更高位的数加1,乘以当前位数。
例如12213, (12+1)*100
#include<iostream>
using namespace std;
int sum1(int n)
{
int count = 0;//结果
int factor = 1;//1-》10-》100...
int lowerNum = 0;//比当前位低的低位的数字
int curNum = 0;//当前位是几,0或1或大于1的一个个位数
int higherNum = 0;//比当前位高的高位的数字
while(n / factor)
{
lowerNum = n - (n / factor) * factor;
curNum = (n / factor) % 10;
higherNum = n / (factor * 10);
switch(curNum)
{
case 0:
count += higherNum * factor;
break;
case 1:
count += higherNum * factor + lowerNum + 1;
break;
default:
count += (higherNum + 1) *factor;
break;
}
factor *= 10;
}
return count;
}
//一种效率低下的方法:
int count1(int n)
{
int num = 0;
while(n != 0)
{
num += (n % 10 == 1) ? 1 : 0;
n /= 10;
}
return num;
}
int f(int n)
{
int count = 0;
for(int i = 1; i <= n; ++i)
{
count += count1(i);
}
return count;
}
int main()
{
int num;
cin >> num;
int res = sum1(num);//高效的方法
cout << res << endl;
res = f(num);//低效的方法
cout << res << endl;
return 0;
}
N= 1 111 111 110 是满足 f(n) = n的最大整数。证明过程不懂。