【2017-7-11】BZOJ3673 可持久化并查集

原题:

 可持久化并查集

Description

n个集合 m个操作
操作:
1 a b 合并a,b所在集合
2 k 回到第k次操作之后的状态(查询算作操作)
3 a b 询问a,b是否属于同一集合,是则输出1否则输出0

0<n,m<=2*10^4

Input

Output

Sample Input

5 6
1 1 2
3 1 2
2 0
3 1 2
2 1
3 1 2

Sample Output

1
0
1


        无语了,第一次接触可持久化数据结构,好端端一个并查集写了一天。

主要问题出在可持久化线段树上面。要注意初值设置和插入函数不能出错,否则答案特别奇葩.

贴一段小小的代码

#include<cstdio>
using namespace std;
const int maxn=2e4+100;
namespace Segtree{
	struct node {
		int l,r,ch[2],fa;
	}tree[maxn*100];
	int cnt=0;
	int root[maxn],rtcnt=0;
	void build(int l,int r,int rt){
		tree[rt].l=l;tree[rt].r=r;
		tree[rt].ch[0]=++cnt;tree[rt].ch[1]=++cnt;
		if(l==r)	{tree[rt].fa=l;return;}
		int mid=(l+r)/2;
		build(l,mid,tree[rt].ch[0]);
		build(mid+1,r,tree[rt].ch[1]);
	}
	int query(int pos,int rt){
		int tl=tree[rt].l,tr=tree[rt].r;
		if(tl==tr) return tree[rt].fa;
		int mid=(tl+tr)/2;
		if(pos<=mid)	return query(pos,tree[rt].ch[0]);
		else return query(pos,tree[rt].ch[1]);
	}
	void update(int num,int &rt,int pos){
		tree[++cnt]=tree[rt],rt=cnt;
		int tl=tree[rt].l,tr=tree[rt].r;
		if(tl==tr) {tree[rt].fa=num;return;}
		int mid=(tl+tr)/2;
		if(pos<=mid)	update(num,tree[rt].ch[0],pos);
		else update(num,tree[rt].ch[1],pos);
	}
}

namespace comset{
	using namespace Segtree;
	void init(int n){root[0]=rtcnt=cnt=0;build(1,n,0);}
	int find(int x){
		int fa=query(x,root[rtcnt]);
		if(fa==x) return x;
		return find(fa);
	}
	void combine(int a,int b){
		a=find(a),b=find(b);
		root[rtcnt+1]=root[rtcnt++];
		update(b,root[rtcnt],a);
	}
	void back(int k){
		root[++rtcnt]=root[k];
	}
}

int main(){
	using namespace comset;
	int n,m;
	scanf("%d%d",&n,&m);
	init(n);
	for(int i=1;i<=m;i++){
		int opt,a,b;
		scanf("%d",&opt);
		if(opt==1)	scanf("%d%d",&a,&b),combine(a,b);
		if(opt==2)  scanf("%d",&a),back(a);
		if(opt==3)	scanf("%d%d",&a,&b),root[rtcnt+1]=root[rtcnt++],printf("%d\n",find(a)==find(b)?1:0);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值