【题解】BZOJ 3673 可持久化并查集

传送门
首先对于学习可持久化并查集有一个先决条件,就是学会用可持久化线段树实现可持久化数组,如果不会的可以戳
接下来我们就来讲讲怎么用可持久化数组实现可持久化并查集。
讲解所需要的图其实在里面已经贴出来了,我在这里就不重贴了。主要讲讲该如何实现可持久化并查集的各个操作。
普通并查集只有查找和合并两个操作,相似的,可持久化并查集也有这两个操作。

init

和可持久化数组类似,建树,记为第0版本。

void build(int &k, int l, int r) {  //数组模拟链表,因为线段树有多棵“缠在一起”,所以很难使用类似堆得表示方法存储
    k = ++cnt;  
    if (l == r) {
        v[k] = l; //v中存储的内容和普通并查集类似
        return;
    }  
    int mid = (l + r) >> 1;  
    build(lc[k], l, mid); //递归建树
    build(rc[k], mid + 1, r);  
}  

查找

先码上普通并查集的查找代码,再根据它进行修改

void find(int x) {
    if (v[x] == x) return x;
    else {
        int ret = find(v[x]);
        v[x] = ret;
        return ret;
    } 
}

本来写三目运算可以更加简洁,但是这里为了对比,就不加了。
上面的代码已经加入了路径压缩,我们先不考虑这个,先考虑查找它的最终的父亲。
考虑到线段树中叶子节点存储的就是该节点的直属父亲(先不考虑路径压缩),直接线段树单点查询即可,知道找的结点的父亲就是它本身时停止操作。
接下来考虑路径压缩。
像上面的普通并查集代码一样,对沿途所有结点进行修改,修改操作一会儿给出。
完整的查找代码:

int query(int k, int l, int r, int pos) {  //单点修改部分
    if (l == r) return v[k];  
    int mid = (l + r) >> 1;  
    if (pos <= mid) 
        return query(lc[k], l, mid, pos);  
    else return query(rc[k], mid + 1, r, pos);  
} 
int find(int &root, int x) {  
    int tmp = query(root, 1, n, x);   //找到直属父亲
    if (tmp == x) return x;  
    else {  
        int ret = find(root, tmp);  //找到最终的父亲
        insert(root, root, 1, n, x, ret);  //路径压缩
        return ret;  
    }  
}  

合并

函数就是上面的insert(),具体函数及其参数为void insert(int x, int &y, int l, int r, int pos, int val),意思是需要将x的内容搬到y中,并且将pos的值改成val,具体操作原理在中已经给出了。具体操作就是每次对某个历史版本进行修改时,对于所有包含该位置的区间结点全部新开一个,并与其父节点连边,对于其他结点,由于不需要发生改动,所以直接连接即可。
完整合并代码:

void insert(int x, int &y, int l, int r, int pos, int val) {  
    y = ++cnt;  
    if (l == r) {
        v[y] = val;
        return;
    }  
    int mid = (l + r) >> 1;  
    lc[y] = lc[x]; rc[y] = rc[x];  //先复制左子树右子树再递归更新
    if (pos <= mid) insert(lc[x], lc[y], l, mid, pos, val);  
    else insert(rc[x], rc[y], mid + 1, r, pos, val);  
}  

另外建议那些用可持久化线段树的同学去把这道题秒了。题解在这里


完整代码

#include<iostream>  
#include<cstdlib>  
#include<cmath>  
#include<cstring>  
#include<cstdio>  
#include<algorithm>  
#define MOD 100000007
#define ll long long  
#define maxn 200005  
#define maxm 10000000  
using namespace std;  
int n, m, p, x, y, cnt, lastans, ans;  
int rt[maxn], v[maxm], lc[maxm], rc[maxm];  
inline int getint() {  
    int x = 0, f = 1;
    char ch = getchar();  
    while (ch < '0' || ch > '9') { if (ch == '-') f = -1; ch = getchar(); }  
    while (ch >= '0' && ch <= '9') { x = x * 10 + ch - '0'; ch = getchar(); }  
    return x * f;  
}  
void build(int &k, int l, int r) {  
    k = ++cnt;  
    if (l == r) {
        v[k] = l;
        return;
    }  
    int mid = (l + r) >> 1;  
    build(lc[k], l, mid);
    build(rc[k], mid + 1, r);  
}  
int query(int k, int l, int r, int pos) {  
    if (l == r) return v[k];  
    int mid = (l + r) >> 1;  
    if (pos <= mid) 
        return query(lc[k], l, mid, pos);  
    else return query(rc[k], mid + 1, r, pos);  
}  
void insert(int x, int &y, int l, int r, int pos, int val) {  
    y = ++cnt;  
    if (l == r) {
        v[y] = val;
        return;
    }  
    int mid = (l + r) >> 1;  
    lc[y] = lc[x]; rc[y] = rc[x];  
    if (pos <= mid) insert(lc[x], lc[y], l, mid, pos, val);  
    else insert(rc[x], rc[y], mid + 1, r, pos, val);  
}  
int find(int &root, int x) {  
    int tmp = query(root, 1, n, x);   
    if (tmp == x) return x;  
    else {  
        int ret = find(root, tmp);  
        insert(root, root, 1, n, x, ret);  
        return ret;  
    }  
}  
int main() {  
    n = getint(); m = getint();  
    build(rt[0],1,n);  
    for(int i = 1; i <= m; i++) {  
        int opt = getint();  
        if (opt == 1) {  
            int x = getint();
            int y = getint();
            int fx = find(rt[i - 1], x), fy = find(rt[i - 1], y);  
            if (fx == fy) rt[i] = rt[i - 1];  
            else insert(rt[i - 1], rt[i], 1, n, fx, fy);  
        }  
        else if (opt == 2) {  
            int x = getint();  
            rt[i] = rt[x];  
        }  
        else {  
            int x = getint();
            int y = getint();
            int fx = find(rt[i - 1], x), fy = find(rt[i - 1], y);  
            lastans = fx == fy ? 1 : 0;  
            printf("%d\n", lastans);
            rt[i] = rt[i - 1];  
        }  
    }  
    return 0;  
}  
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
并查集是一种常用的数据结构,用于管理一个不相交集合的数据。在并查集中,每个元素都有一个父节点指向它所属的集合的代表元素。通过查找和合并操作,可以判断两个元素是否属于同一个集合,并将它们合并到同一个集合中。 在解决某些问题时,可以使用并查集进行优化。例如,在区间查询中,可以通过优化并查集的查询过程,快速找到第一个符合条件的点。 对于拆边(destroy)操作,一般的并查集无法直接实现这个功能。但是可以通过一个巧妙的方法来解决。首先,记录下所有不会被拆除的边,然后按照逆序处理这些指令。遇到拆边操作时,将该边重新加入并查集中即可。 在实现并查集时,虽然它是一种树形结构,但只需要使用数组就可以实现。可以通过将每个元素的父节点记录在数组中,来表示元素之间的关系。通过路径压缩和按秩合并等优化策略,可以提高并查集的效率。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [「kuangbin带你飞」专题五并查集专题题解](https://blog.csdn.net/weixin_51216553/article/details/121643742)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [并查集(详细解释+完整C语言代码)](https://blog.csdn.net/weixin_54186646/article/details/124477838)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值