leetcode[372] super pow

问题:你的任务是计算 a^b 对 1337 取模,a 是一个正整数,b 是一个非常大的正整数且会以数组形式给出。

输入:int a,vector<int>& b,base=1337

输出:幂取模后的结果

思路:

首先,利用如下递推公式处理b:

然后,因为b是一个非常大的正整数,因此a^b的结果肯定不能用int表示,这里,用到了一个数学知识:(a*b)%base等于(a%base)*(b%base)%base.将其利用到本道题的求幂子函数上。

最后,用递归实现求幂子函数。

代码:

class Solution {
public:
    const int base=1337;
    int myPow(int a, int b)
    {
        if(b==0)
            return 1;
        a=a%base;
        if(b&0x1==1)
        {
            // return (myPow(a,(b-1)>>1)*myPow(a,(b-1)>>1)*a)%base;  // 这样写会超过整数范围
            return (myPow(a*a,(b-1)>>1)*a)%base;
        }
        else
        {
            // return (myPow(a,b>>1)*myPow(a,b>>1))%base;  // 这样写调用两次递归
            return myPow(a*a,b>>1)%base;
        }
    }
    int superPow(int a, vector<int>& b) {
        if(b.empty())
            return 1;
        int c =b.back();
        b.pop_back();
        int part1=myPow(a,c);
        int part2=myPow(superPow(a,b),10);
        return (part1*part2)%base;
    }
};

复杂度分析:假设n=b.size();时间复杂度为O(log_210^N)=O(N),空间复杂度O(n).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值