编辑距离

编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。一般来说,编辑距离越小,两个串的相似度越大。

比如要计算cafe和coffee的编辑距离。cafe→caffe→coffe→coffee
先创建一个6×8的表(cafe长度为4,coffee长度为6,各加2)
(1):
    c o f f e e
               
c              
a              
f              
e           1
接着,在如下位置填入数字(表2):
    c o f f e e
  0 1 2 3 4 5 6
c 1            
a 2            
f 3            
e 4         2
从3,3格开始,开始计算。取以下三个值的最小值:
  • 如果最上方的字符等于最左方的字符,则为左上方的数字。否则为左上方的数字+1。(对于3,3来说为0)
  • 左方数字+1(对于3,3格来说为2)
  • 上方数字+1(对于3,3格来说为2)
因此为格3,3为0(表3)
    c o f f e e
  0 1 2 3 4 5 6
c 1 0          
a 2            
f 3            
e 4            
循环操作,推出下表
    c o f f e e
  0 1 2 3 4 5 6
c 1 0 1 2 3 4 5
a 2 1 1 2 3 4 5
f 3 2 2 1 2 3 4
e 4 3 3 2 2 2 3
取右下角,得编辑距离为3。

C/C++伪代码

动态规划经常被用来作为这个问题的解决手段之一。
整数 Levenshtein距离(字符串 str1[1..m], 字符串 str2[1..n])
//声明变量, d[i , j]用于记录str1[1...i]与str2[1..j]的Levenshtein距离
int d[0..m, 0..n]
//初始化
for i from 0 to m
d[i, 0] := i
for j from 0 to n
d[0, j] := j
//用动态规划方法计算Levenshtein距离
for i from 1 to m
for j from 1 to n
{
//计算替换操作的代价,如果两个字符相同,则替换操作代价为0,否则为1
if str1[i]== str2[j]then cost := 0
else cost := 1
//d[i,j]的Levenshtein距离,可以有
d[i, j] := minimum(
d[i-1, j] + 1//在str1上i位置删除 字符str1[i](或者在str2上i位置插入字符str1[i])
d[i, j-1] + 1//在str1上j位置插入字符str2[j] [1]   (或者在str2上j位置删除字符str2[j])
d[i-1, j-1] + cost // 替换操作
)
}
//返回d[m, n]
return d[m, n]
wikisource上有不同的编程语言的版本。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值