pycharm+pytorch环境搭建

python的解释器

将python语言翻译成机器指令语言

虚拟环境

各环境间相互独立

Anaconda

Anaconda是为了方便使用python而建立的一个软件包,其包含常用的250多个工具包,多版本的python解释器和强大的虚拟环境管理工具,所以anaconda得名python全家桶,anaconda可以使安装运行和升级环境变得更简单,因此推荐安装使用

安装结束后:

验证是否安装成功,cmd执行:

PyTorch安装

PyTorch

CUDA下载

CUDA Toolkit 12.4 Update 1 Downloads | NVIDIA Developer

安装完成后进入安装目录,验证

cuDNN下载

CUDA Deep Neural Network (cuDNN) | NVIDIA Developer

需要注册账号下载

将cunn的压缩包解压,将三个文件夹复制,粘贴到cuda安装目录下

安装完成后运行demo程序进行验证

设备查询

安装pytorch

PyTorch

可以从

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121 链接的网站中直接下载
https://download.pytorch.org/whl/cu121

下载torch

下载torchvision

conda创建虚拟环境

在pycharm的consle中创建

 conda create -n dicom_gpu python=3.11.7

激活环境

进入torch及torchversion的安装目录

安装torch

 pip install "torch-2.1.0+cu121-cp311-cp311-win_amd64.whl"  

安装torchversion

 pip install "torchvision-0.16.0+cu121-cp311-cp311-win_amd64.whl" 

设置pycharm的python解释器

运行代码验证

import torch
from torchvision import models

print("Hello PyTorch{}".format(torch.__version__))

print(torch.cuda.is_available())

验证成功:

PyCharm中搭建PyTorch环境,可以按照以下步骤进行操作: 1. 安装Anaconda或Miniconda,并创建一个新的虚拟环境。 2. 打开PyCharm,选择File -> Settings -> Project -> Project Interpreter,点击右上角的“+”按钮,选择“Add Conda Environment”。 3. 在弹出的窗口中,选择刚才创建的虚拟环境,并勾选“Make available to all projects”。 4. 点击“OK”按钮,等待PyCharm安装所需的包和依赖项。 5. 安装PyTorch和其他需要的库,可以在PyCharm的Terminal中使用conda或pip命令进行安装。 6. 在代码中导入PyTorch库,即可开始使用PyTorch进行深度学习开发。 希望以上步骤能够帮助您成功在PyCharm中搭建PyTorch环境。 ### 回答2: PyTorch是一款广泛使用的深度学习框架,PyCharm是一款使用广泛的Python IDE。为了提高PyTorch的开发效率,我们可以将其与PyCharm集成,从而可以在PyCharm中进行PyTorch的开发和调试。 在PyCharm中搭建PyTorch环境的步骤如下: Step 1:安装PyTorch库 首先需要在PyCharm中安装PyTorch库。可以通过PyCharm的Terminal来使用pip安装PyTorch,也可以在PyCharm的Settings中点击Project Interpreter,选择具体项目的Python解释器,然后点击“+”来搜索并安装PyTorch。安装完成后,可以在Project Interpreter中查看已安装的库并升级。 Step 2:配置PyCharmPython解释器 在PyCharm的Settings中,可以配置默认的Python解释器和项目的Python解释器。如果想要使用PyTorch需要配置默认和项目的Python解释器均指向正确的PyTorch解释器。 Step 3:创建PyTorch项目 在PyCharm中可以创建Python项目和PyTorch项目。PyTorch项目需要在创建新项目时选择“Scientific Project”类型,然后选择PyTorch环境。 Step 4:导入PyTorch库 在PyCharm中使用PyTorch需要先导入所需的库。可以在.py文件开头使用import语句导入PyTorch库,例如:import torch。 Step 5:编写代码并调试 在PyCharm中可以编写PyTorch的代码并进行调试。可以使用PyTorch提供的各种功能,如神经网络模块、优化器和损失函数等。调试可以通过PyCharm自带的调试功能进行,可以单步调试、断点调试等。 总之,将PyTorchPyCharm集成可以提高开发效率,方便代码编写和调试。通过上述步骤搭建PyTorch环境在PyCharm中也不难完成。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值