求斐波那契数列的第n项
斐波那契数列的定义:
f(0) = 0; f(1)=1;f(n)=f(n-1)+f(n-2)
解法一(递归):
public static int Fibonacci(int n) {
if (n == 0) {
return 0;
}
if (n == 1) {
return 1;
}
return Fibonacci(n - 1) + Fibonacci(n - 2);
}
缺点: 效率较低,如:当求f(10)时先求f(9)和f(8),求f(9)时又求了f(8)
方法二:
public static int Fibonacci2(int n) {
if (n == 0) {
return 0;
}
if (n == 1) {
return 1;
}
int a2 = 0;
int a1 = 1;
int i = 2;
int res = 0;
while (true) {
if (i > n) {
break;
}
res = a2 + a1;
a2 = a1;
a1 = res;
i++;
}
return res;
}
解析:递归慢,有一部分原因是有重复的计算,但是从下往上计算,就可以避免这种问题.
题目二: 青蛙跳台问题
一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个n级的台阶总共有多少种跳法?
解析: 当n>2时,假如当n=10时,青蛙跳到10级时,可能时从9级跳一步上来的,也可能是直接跳2级上来的。所以f(10)=f(9)+f(8),
当求f(9)时,发现 f(9)=f(8)+f(7),符合斐波那契数列