ACM入门题-最大递增子序列

这篇博客介绍了如何使用Go语言解决两个算法问题:最长递增子序列(LIS)和超级跳跃游戏。对于LIS问题,博主提供了动态规划的解决方案,通过维护以每个元素结尾的最长递增子序列长度来找到全局最长子序列。而在超级跳跃游戏中,同样运用动态规划策略更新每个位置的最大跳跃距离。代码中详细展示了这两个问题的解决过程。

ACM入门题-最长递增子序列(LIS)-Go语言

问题描述

输入一个数组 nums ,输出其最长子数组的长度。

如:输入nums = [10,9,2,5,3,7,21,18] , 输出 4 。解释 [2,3,7,21]

image-20220402043236912

本题可以使用动态规划,dp[i] 代表以nums[i] 结束的最长子序列长度。从中找到最大的 dp[i]

力扣300. 最长递增子序列

func lengthOfLIS(nums []int) int {
    //base case
    n := len(nums)
    dp := make([]int,n)
    res := 1
    for i := 0; i < n; i++ {
        dp[i] = 1
        for j := 0; j < i; j++ {
            if nums[j] < nums[i] {
                dp[i] = max(dp[i],dp[j] + 1)
            }
        }
        res = max(res,dp[i])
    }
    return res
}

func max(a,b int) int {
    if a > b {return a}
    return b
}

ACM入门题Super Jumping! Jumping! Jumping!

package main

import (
	"bufio"
	"fmt"
	"os"
	"strconv"
	"strings"
)

func main() {
	var sline string
	sca := bufio.NewScanner(os.Stdin)

	lineNums := make([][]int, 0)
	var getNums = func(s []string) []int {
		n := len(s)
		ans := make([]int, n-1)
		for i := 1; i < n; i++ {
			ans[i-1], _ = strconv.Atoi(s[i])
		}
		return ans
	}
	for sca.Scan() {
		sline = sca.Text()
		if sline == "0" {
			break
		}
		a := getNums(strings.Split(sline, " "))
		lineNums = append(lineNums, a)
	}

	var max = func(a, b int) int {
		if a > b {
			return a
		}
		return b
	}
	for line := 0; line < len(lineNums); line++ {
		a := lineNums[line]
		n := len(a)
		dp := make([]int, n) // dp[i] 表示以a[i]结束的最长递增子序列个数
		res := 0
		for i := 0; i < n; i++ {
			dp[i] = a[i]
			for j := 0; j < i; j++ {
				if a[i] > a[j] {
					dp[i] = max(dp[i], dp[j]+a[i])
				}
			}
			res = max(res, dp[i])
		}
		fmt.Println(res)
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值