普通大语言模型会隐含地采取推理步骤

一、核心论点:大语言模型的“隐含推理”现象

即使未经过专门的“思维链”(Chain of Thought)训练,大语言模型(如Claude 3.5 Haiku)在处理任务时,会通过神经元激活模式**自发进行隐含的推理步骤**。这种“思考”并非直接输出答案,而是通过内部特征的激活与关联,分步骤推导结论,且推理过程可通过技术手段被解析和验证。

二、新发现:Anthropic的研究突破

1. 研究目标与对象

  • 目标:揭示大语言模型(Transformer架构)在生成回复时的内部决策过程,尤其是未显式训练推理能力时的隐含逻辑。

  • 对象:Claude 3.5 Haiku(Anthropic的大语言模型,未接受生成思维链的训练)。

2. 关键技术:跨层转码器(Cross-Layer Transcoder)

  • 替代全连接层:传统全连接层输出密集且难以解释,跨层转码器通过两层结构(第一层输出稀疏特征),将模型内部状态转化为可解释的“概念特征”(如“反义词”“首府城市”等)。

    <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据分析能量站

谢谢支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值