一、核心论点:大语言模型的“隐含推理”现象
即使未经过专门的“思维链”(Chain of Thought)训练,大语言模型(如Claude 3.5 Haiku)在处理任务时,会通过神经元激活模式**自发进行隐含的推理步骤**。这种“思考”并非直接输出答案,而是通过内部特征的激活与关联,分步骤推导结论,且推理过程可通过技术手段被解析和验证。
二、新发现:Anthropic的研究突破
1. 研究目标与对象
-
目标:揭示大语言模型(Transformer架构)在生成回复时的内部决策过程,尤其是未显式训练推理能力时的隐含逻辑。
-
对象:Claude 3.5 Haiku(Anthropic的大语言模型,未接受生成思维链的训练)。
2. 关键技术:跨层转码器(Cross-Layer Transcoder)
-
替代全连接层:传统全连接层输出密集且难以解释,跨层转码器通过两层结构(第一层输出稀疏特征),将模型内部状态转化为可解释的“概念特征”(如“反义词”“首府城市”等)。
<