技术原理(数学公式解析)
1. 异构图定义
设图G=(V,E,R),其中:
- V = V_u ∪ V_i(用户节点 ∪ 商品节点)
- R = {click, purchase, favorite}(边类型集合)
2. 多行为聚合公式
节点h的更新过程:
h
v
(
l
+
1
)
=
σ
(
∑
r
∈
R
∑
u
∈
N
r
(
v
)
α
v
u
r
W
r
(
l
)
h
u
(
l
)
)
h_v^{(l+1)} = \sigma\left(\sum_{r\in R}\sum_{u\in N_r(v)}\alpha_{vu}^r W_r^{(l)}h_u^{(l)}\right)
hv(l+1)=σ
r∈R∑u∈Nr(v)∑αvurWr(l)hu(l)
其中注意力系数计算:
α
v
u
r
=
softmax
(
LeakyReLU
(
a
r
T
[
W
r
h
v
(
l
)
∣
∣
W
r
h
u
(
l
)
]
)
)
\alpha_{vu}^r = \text{softmax}\left(\text{LeakyReLU}(a_r^T[W_rh_v^{(l)}||W_rh_u^{(l)}])\right)
αvur=softmax(LeakyReLU(arT[Wrhv(l)∣∣Wrhu(l)]))
案例:用户A点击商品X,购买商品Y,收藏商品Z。模型学习到购买行为的权重系数α_purchase=0.6,点击α_click=0.3,收藏α_favorite=0.1
实现方法(PyTorch代码)
import dgl
import torch
import torch.nn as nn
import dgl.nn.pytorch as dglnn
class MBGNN(nn.Module):
def __init__(self, in_dim, hidden_dim, n_etypes):
super().__init__()
self.conv1 = dglnn.HeteroGraphConv({
etype: dglnn.GATConv(in_dim, hidden_dim, num_heads=2)
for etype in ['click', 'purchase', 'favorite']
})
def forward(self, g, feat_dict):
# g: 异构图对象
# feat_dict: {'user':..., 'item':...}
h = self.conv1(g, feat_dict)
h = {k: v.mean(1) for k, v in h.items()} # 多头注意力聚合
return h
# 构建样例图
data_dict = {
('user', 'click', 'item'): (torch.tensor([0,1]), torch.tensor([2,3])),
('user', 'purchase', 'item'): (torch.tensor([0]), torch.tensor([4])),
('user', 'favorite', 'item'): (torch.tensor([1]), torch.tensor([5]))
}
g = dgl.heterograph(data_dict)
# 模型初始化
model = MBGNN(in_dim=64, hidden_dim=128, n_etypes=3)
user_feats = torch.randn(2, 64) # 2个用户
item_feats = torch.randn(6, 64) # 6个商品
output = model(g, {'user': user_feats, 'item': item_feats})
应用案例(电商推荐场景)
某服饰电商平台实践
数据规模:
- 用户:1200万
- 商品:850万
- 行为记录:点击4.2亿次,购买1500万次,收藏800万次
模型结构:
效果指标:
指标 | 基线模型 | MBGNN | 提升 |
---|---|---|---|
CTR | 6.32% | 7.01% | +11% |
购买转化率 | 1.87% | 2.15% | +15% |
推荐GMV | ¥3.2亿 | ¥3.8亿 | +19% |
优化技巧
超参数调优经验
- 嵌入维度:商品ID建议128-256维,用户属性32-64维
- 图卷积层数:2-3层最佳(层数过多导致过平滑)
- 注意力头数:4头比2头AUC提升0.3%
工程实践要点
- 负采样策略:对购买行为进行10:1负采样,点击行为5:1
- 图分区优化:使用METIS进行图分割,训练速度提升3倍
- 在线服务:将商品Embedding缓存Redis,QPS可达12000+
代码优化示例:
# 使用稀疏矩阵加速
g = g.formats(['csc']) # 列压缩存储
# 混合精度训练
scaler = torch.cuda.amp.GradScaler()
with torch.cuda.amp.autocast():
loss = model(batch)
scaler.scale(loss).backward()
scaler.step(optimizer)
前沿进展
最新论文成果
- 动态构图(SIGIR 2023)
- 论文:《Dynamic Multi-Behavior Graph Modeling》
- 创新点:实时更新图结构,捕捉用户兴趣漂移
- 效果:在短视频推荐场景提升Recall@20达7.8%
- 自监督学习(KDD 2023)
- 方法:对比学习增强行为表征
- 损失函数:
L S S L = − log exp ( s i m ( z i , z j ) / τ ) ∑ k = 1 N exp ( s i m ( z i , z k ) / τ ) \mathcal{L}_{SSL} = -\log\frac{\exp(sim(z_i,z_j)/\tau)}{\sum_{k=1}^N \exp(sim(z_i,z_k)/\tau)} LSSL=−log∑k=1Nexp(sim(zi,zk)/τ)exp(sim(zi,zj)/τ) - 指标:长尾商品CTR提升23%
开源项目推荐
- HGNN框架
- GitHub:https://github.com/xxx/hgnn
- 特性:支持多GPU异构图形训练
- Alibaba GraphLearn
- 文档:https://graph-learn.readthedocs.io
- 优势:工业级大规模图训练解决方案
附录:数学符号说明
符号 | 含义 |
---|---|
W r W_r Wr | 类型特定的变换矩阵 |
σ \sigma σ | 激活函数(通常为ReLU) |
N r ( v ) N_r(v) Nr(v) | 节点v在关系r下的邻居 |
通过本方案的实施,某头部电商在双11期间实现推荐GMV同比增长37%,验证了多行为图网络的有效性。实际部署时需注意冷启动问题,建议结合属性图卷积进行联合训练。