深度学习驱动的符号回归:从数据中自动挖掘物理定律的算法实现与工业落地

技术原理(数学公式)

核心思想

符号回归(Symbolic Regression)通过搜索数学表达式空间,找到最符合观测数据的显式方程。与传统回归不同,其输出是人类可解释的数学公式,而非黑箱模型。

核心公式
  1. 稀疏回归目标函数
    min ⁡ θ ( ∑ i = 1 N ( y i − f θ ( x i ) ) 2 + λ ∥ θ ∥ 1 ) \min_{\theta} \left( \sum_{i=1}^N \left(y_i - f_\theta(x_i)\right)^2 + \lambda \|\theta\|_1 \right) θmin(i=1N(yifθ(xi))2+λθ1)
    其中, f θ ( x ) f_\theta(x) fθ(x)由基函数(如 sin ⁡ , exp ⁡ , x 2 \sin, \exp, x^2 sin,exp,x2)线性组合构成, λ \lambda λ控制稀疏性,用于筛选关键项。

  2. 符号网络(Symbolic Network)
    定义可微表达式树,例如:
    f ( x ) = w 1 ⋅ sin ⁡ ( w 2 x + w 3 ) + w 4 ⋅ x w 5 f(x) = w_1 \cdot \sin(w_2 x + w_3) + w_4 \cdot x^{w_5} f(x)=w1sin(w2x+w3)+w4xw5
    通过梯度下降优化参数 w i w_i wi,结合强化学习选择运算符。


实现方法(PyTorch代码)

示例:构建符号回归模型
import torch
import torch.nn as nn

class SymbolicNet(nn.Module):
    def __init__(self, n_functions=10):
        super().__init__()
        # 定义基函数库:线性、多项式、三角函数等
        self.weights = nn.Parameter(torch.randn(n_functions))
        self.params = nn.Parameter(torch.randn(n_functions, 2))  # 每项的参数(如系数和指数)

    def forward(self, x):
        terms = []
        for i in range(self.weights.shape[0]):
            term = self.weights[i] * (x ** self.params[i, 0]) * torch.sin(self.params[i, 1] * x)
            terms.append(term)
        return torch.stack(terms, dim=1).sum(dim=1)

# 训练循环
model = SymbolicNet()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
for epoch in range(1000):
    y_pred = model(x_data)
    loss = nn.MSELoss()(y_pred, y_data) + 0.1 * torch.norm(model.weights, p=1)  # L1正则化
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

应用案例(工业场景)

案例1:流体力学中的阻力定律发现
  • 问题:从颗粒沉降速度与阻力数据中推导斯托克斯定律 F d = 6 π μ r v F_d = 6\pi \mu r v Fd=6πμrv
  • 方法:输入 v , r , μ v, r, \mu v,r,μ F d F_d Fd的观测数据,约束基函数包含 μ , r , v \mu, r, v μ,r,v的乘积项。
  • 结果:恢复公式与理论公式误差<3%,且成功识别关键变量依赖性。
案例2:化学反应速率方程拟合
  • 问题:从浓度-时间数据中发现速率方程 r = k [ A ] m [ B ] n r = k[A]^m[B]^n r=k[A]m[B]n
  • 方法:使用PySR库自动搜索指数组合,排除不显著变量(如 [ C ] [C] [C])。
  • 指标:拟合 R 2 > 0.98 R^2 > 0.98 R2>0.98,指数 m , n m,n m,n误差±0.1。

优化技巧

超参数调优
  1. 基函数选择:优先包含领域知识相关函数(如流体力学中的 x \sqrt{x} x )。
  2. 复杂度控制:通过AIC/BIC准则平衡拟合优度与公式复杂度,防止过拟合。
工程实践
  • 渐进式训练:先训练低复杂度模型,逐步增加项数(如从2项到5项)。
  • 早停法:验证集损失连续5轮不下降时终止训练。
  • 结果解析:对系数取整(如 2.01 → 2 2.01 \rightarrow 2 2.012),提升可读性。

前沿进展

论文成果(2023)
  1. AI-Feynman 2.0(MIT):引入分治策略,将高维问题分解为低维子问题,成功恢复量子力学方程。
  2. SymbolicGPT(DeepMind):基于Transformer生成表达式,在气象数据中预测微分方程,准确率提升40%。
开源项目
  1. PySR:支持GPU加速的符号回归库,内置并行化和公式简化。
    pip install pysr
    
  2. Eureqa(商业软件):提供交互式界面,支持多目标优化(精度、简洁性)。

总结

符号回归通过“机器学习 + 可解释性”为科学发现提供了新范式。未来方向包括结合物理约束(如对称性)和提升高维问题求解效率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值