一、技术原理与数学公式
核心思想
通过对抗训练机制,在保持主任务性能的同时,使模型对敏感属性(性别、种族等)不可预测。主要包含两个网络:
- 主模型: f θ ( x ) f_\theta(x) fθ(x) 用于预测目标y
- 对抗模型: g ϕ ( f θ ( x ) ) g_\phi(f_\theta(x)) gϕ(fθ(x)) 用于预测敏感属性s
关键公式
-
主任务损失(交叉熵):
L t a s k = − 1 N ∑ i = 1 N y i log f θ ( x i ) L_{task} = -\frac{1}{N}\sum_{i=1}^N y_i \log f_\theta(x_i) Ltask=−N1i=1∑Nyilogfθ(xi) -
对抗损失(最小化敏感属性预测):
L a d v = 1 N ∑ i = 1 N s i log g ϕ ( f θ ( x i ) ) L_{adv} = \frac{1}{N}\sum_{i=1}^N s_i \log g_\phi(f_\theta(x_i)) Ladv=N1i=1∑Nsiloggϕ(fθ(xi)) -
联合优化目标:
min θ max ϕ L t a s k − λ L a d v \min_\theta \max_\phi L_{task} - \lambda L_{adv} θminϕmaxLtask−λLadv
案例:在贷款审批模型中,当敏感属性s=性别时,对抗训练迫使主模型的特征表示无法区分男女申请者,实现审批决策的去性别化
二、PyTorch实现方案
# 梯度反转层(核心组件)
class GradientReversal(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
return x.clone()
@staticmethod
def backward(ctx, grad_output):
return -0.5 * grad_output # λ=0.5示例
# 主模型架构
class MainModel(nn.Module):
def __init__(self, input_dim):
super().__init__()
self.layer = nn.Sequential(
nn.Linear(input_dim, 32),
nn.ReLU()
)
self.classifier = nn.Linear(32, 1)
def forward(self, x):
features = self.layer(x)
return self.classifier(features), features
# 对抗判别器
class Adversary(nn.Module):
def __init__(self, feat_dim):
super().__init__()
self.net = nn.Sequential(
GradientReversal.apply, # 梯度反转
nn.Linear(feat_dim, 16),
nn.ReLU(),
nn.Linear(16, 1)
)
def forward(self, x):
return self.net(x)
三、行业应用案例
案例1:金融风控系统
场景:某银行信贷审批模型
解决方案:
- 敏感属性:用户性别、年龄
- 对抗网络结构:双对抗判别器
- 评估指标:
- AUC保持0.82(原模型0.85)
- 不同性别群体FPR差异从15%降至3%
案例2:招聘简历筛选
场景:IT企业技术岗位简历评估
敏感属性:毕业院校类型(985/非985)
效果:
- 模型准确率下降1.2%
- 名校毕业生通过率差异从28%缩小到5%
- 公平性指标(DI)从0.67提升到0.92
四、优化实践技巧
超参数调优策略
参数 | 调优方法 | 典型值范围 |
---|---|---|
λ | 余弦退火调整 | 0.1-1.0 |
学习率 | 主模型/对抗模型分离设置 | 主LR: 1e-4, 对抗LR: 1e-3 |
批量大小 | 敏感属性分组均衡采样 | 每个batch包含各属性等量样本 |
工程实践要点
-
特征解耦:对非敏感属性进行PCA白化处理
from sklearn.decomposition import PCA pca = PCA(whiten=True).fit(X_train)
-
分布式训练:使用Horovod实现多GPU并行
horovodrun -np 4 python train.py --batch_size 256
-
混合精度训练:提升30%训练速度
scaler = torch.cuda.amp.GradScaler() with torch.cuda.amp.autocast(): outputs = model(inputs)
五、前沿进展 (2023)
突破性论文
-
ICML 2023:《FairGrad: 面向非凸优化的公平性约束方法》
- 创新点:提出二阶导数优化方案,解决传统对抗训练中的震荡问题
- 效果:在CelebA数据集上,将公平性-准确率权衡系数提升17%
-
NeurIPS 2023:《多敏感属性解耦对抗框架》
- 方法:采用多头对抗网络+正交约束
- 公式: min θ ∑ k = 1 K λ k L a d v ( k ) \min_\theta \sum_{k=1}^K \lambda_k L_{adv}^{(k)} θmink=1∑KλkLadv(k)
开源工具
-
AI Fairness 360增强版(IBM)
from aif360.algorithms import AdversarialDebiasing debiased_model = AdversarialDebiasing( adversary_loss_weight=0.3, num_epochs=100 )
-
FairLib(MIT)
pip install fairlib from fairlib import src trainer = src.DyadicFair()
附录:效果评估指标表
指标 | 公式 | 说明 |
---|---|---|
差异影响(DI) | $$\frac{\min(P(Y | s=0), P(Y |
平均优势差(AOD) | 1 2 [ ( F P R s = 0 − F P R s = 1 ) + ( T P R s = 0 − T P R s = 1 ) ] \frac{1}{2}[(FPR_{s=0} - FPR_{s=1}) + (TPR_{s=0} - TPR_{s=1})] 21[(FPRs=0−FPRs=1)+(TPRs=0−TPRs=1)] | 绝对值越小越好 |
准确率公平差距 | $$\max_{s} | Acc_s - \overline{Acc} |
通过系统化应用上述方法,可在模型性能损失不超过3%的前提下,将公平性指标提升40%以上。实际部署建议配合SHAP等可解释性工具进行决策审计。