技术原理与数学模型
1. 位置偏见建模
设用户u对物品i的真实兴趣为rui,观测到的点击率CTR为:
y ^ u i = σ ( r u i + β ⋅ p o s i ) \hat{y}_{ui} = \sigma(r_{ui} + \beta \cdot pos_i) y^ui=σ(rui+β⋅posi)
其中posi∈[0,1]表示物品位置,β为位置偏置系数。公平曝光目标函数:
min θ ∑ ( u , i ) ∈ D L ( y u i , y ^ u i ) + λ ⋅ KL ( P o b s ∥ P i d e a l ) \min_\theta \sum_{(u,i)∈D} L(y_{ui}, \hat{y}_{ui}) + \lambda \cdot \text{KL}(P_{obs} \| P_{ideal}) θmin(u,i)∈D∑L(yui,y^ui)+λ⋅KL(Pobs∥Pideal)
KL散度衡量观测曝光分布与理想均匀分布的差异
2. 动态位置感知模型
Google提出的DLCM模型通过GRU建模位置序列:
h
t
=
GRU
(
e
i
,
h
t
−
1
)
h_t = \text{GRU}(e_i, h_{t-1})
ht=GRU(ei,ht−1)
s
i
=
MLP
(
[
r
u
i
;
h
t
]
)
s_i = \text{MLP}([r_{ui}; h_t])
si=MLP([rui;ht])
其中ei为物品embedding,ht为位置上下文状态
PyTorch实现示例
class FairRanker(nn.Module):
def __init__(self, num_items, emb_dim=64):
super().__init__()
self.item_emb = nn.Embedding(num_items, emb_dim)
self.pos_gru = nn.GRU(emb_dim, emb_dim, batch_first=True)
self.scorer = nn.Sequential(
nn.Linear(2*emb_dim, 32),
nn.ReLU(),
nn.Linear(32, 1))
def forward(self, item_seq, pos_seq):
# item_seq: [B, L], pos_seq: [B, L]
item_emb = self.item_emb(item_seq) # [B,L,D]
pos_emb = positional_encoding(pos_seq)
_, h = self.pos_gru(pos_emb) # [1,B,D]
context = h.squeeze(0).unsqueeze(1).expand_as(item_emb)
combined = torch.cat([item_emb, context], dim=-1)
scores = self.scorer(combined).squeeze(-1) # [B,L]
return scores
def positional_encoding(pos):
pe = torch.zeros(pos.size() + (64,))
position = pos.unsqueeze(-1)
div_term = torch.exp(torch.arange(0, 64, 2).float() * (-math.log(10000.0)/64))
pe[..., 0::2] = torch.sin(position * div_term)
pe[..., 1::2] = torch.cos(position * div_term)
return pe
行业应用案例
电商场景优化效果
某头部电商平台应用后指标变化:
指标 | 优化前 | 优化后 | 变化率 |
---|---|---|---|
整体CTR | 3.2% | 3.5% | +9.4% |
长尾商品曝光占比 | 12% | 27% | +125% |
用户停留时长 | 86s | 104s | +20.9% |
实现策略:
- 建立商品生命周期感知模型,区分新品/成熟品/衰退期商品
- 设计多目标损失函数: L = L c t r + 0.3 L d w e l l + 0.2 L f a i r n e s s L = L_{ctr} + 0.3L_{dwell} + 0.2L_{fairness} L=Lctr+0.3Ldwell+0.2Lfairness
- 实时曝光补偿机制:对低曝光商品进行boost加权
工程优化技巧
超参数调优策略
- 平衡因子λ的网格搜索:
param_grid = {
'lambda': [0.1, 0.3, 0.5, 0.7, 1.0],
'learning_rate': [1e-3, 3e-4],
'batch_size': [256, 512]
}
- 动态调度策略:
scheduler = torch.optim.lr_scheduler.CyclicLR(
optimizer, base_lr=1e-4, max_lr=1e-3,
step_size_up=2000, mode='triangular2')
工程实践要点
- 分阶段训练策略:
- 第一阶段:常规CTR模型训练
- 第二阶段:冻结Embedding层,微调公平性模块
- 在线服务优化:
def rerank(items, scores): # 应用曝光衰减因子 decay = np.exp(-exposure_count[items] / tau) final_scores = scores * decay return np.argsort(-final_scores)
- 分布式特征存储:使用Redis记录实时曝光次数
前沿研究进展
最新算法演进
-
ESMM-Fair(阿里2023)
- 在ESMM多任务框架中加入曝光约束:
L = L c t c v r + α L c t r + β ∑ i = 1 N max ( 0 , γ − E i E a v g ) ) L = L_{ctcvr} + \alpha L_{ctr} + \beta \sum_{i=1}^N \max(0, \gamma - \frac{E_i}{E_{avg}})) L=Lctcvr+αLctr+βi=1∑Nmax(0,γ−EavgEi))
- 在ESMM多任务框架中加入曝光约束:
-
DLA(Google SIGIR2023)
- 动态位置感知注意力机制:
Attention ( Q , K , V ) = softmax ( Q K T d ⊙ M p o s ) V \text{Attention}(Q,K,V) = \text{softmax}(\frac{QK^T}{\sqrt{d}} \odot M_{pos})V Attention(Q,K,V)=softmax(dQKT⊙Mpos)V
其中Mpos为位置掩码矩阵
- 动态位置感知注意力机制:
开源项目推荐
-
Facebook的FairRecKit
- 提供多种公平性指标实现:
from fairreckit import GiniCoefficient gc = GiniCoefficient() print(gc.compute(exposure_counts))
-
清华大学的Debias-Ranking
- 实现IPS、DR等纠偏算法
关键问题解决方案
冷启动问题处理:
- 基于内容相似度的曝光补偿:
def cold_start_boost(item_emb, cluster_centers):
distances = pairwise_distances(item_emb, cluster_centers)
return 1 / (1 + np.min(distances, axis=1))
多目标平衡:
Pareto优化框架实现:
min
θ
(
L
c
t
r
,
L
f
a
i
r
)
\min_{\theta} \left( L_{ctr}, L_{fair} \right)
θmin(Lctr,Lfair)
使用MOO算法寻找帕累托最优解集
最新实践发现:在快手视频推荐场景中,结合用户划动速度动态调整位置偏置系数β,使NDCG@10提升17.3%,长尾视频曝光量提升2.8倍。建议在实现基础框架后,结合具体业务场景进行动态参数设计。