推荐系统公平曝光机制:消除位置偏见的算法演进与实践指南

技术原理与数学模型

1. 位置偏见建模

设用户u对物品i的真实兴趣为rui,观测到的点击率CTR为:

y ^ u i = σ ( r u i + β ⋅ p o s i ) \hat{y}_{ui} = \sigma(r_{ui} + \beta \cdot pos_i) y^ui=σ(rui+βposi)

其中posi∈[0,1]表示物品位置,β为位置偏置系数。公平曝光目标函数:

min ⁡ θ ∑ ( u , i ) ∈ D L ( y u i , y ^ u i ) + λ ⋅ KL ( P o b s ∥ P i d e a l ) \min_\theta \sum_{(u,i)∈D} L(y_{ui}, \hat{y}_{ui}) + \lambda \cdot \text{KL}(P_{obs} \| P_{ideal}) θmin(u,i)DL(yui,y^ui)+λKL(PobsPideal)

KL散度衡量观测曝光分布与理想均匀分布的差异

2. 动态位置感知模型

Google提出的DLCM模型通过GRU建模位置序列:

h t = GRU ( e i , h t − 1 ) h_t = \text{GRU}(e_i, h_{t-1}) ht=GRU(ei,ht1)
s i = MLP ( [ r u i ; h t ] ) s_i = \text{MLP}([r_{ui}; h_t]) si=MLP([rui;ht])

其中ei为物品embedding,ht为位置上下文状态

PyTorch实现示例

class FairRanker(nn.Module):
    def __init__(self, num_items, emb_dim=64):
        super().__init__()
        self.item_emb = nn.Embedding(num_items, emb_dim)
        self.pos_gru = nn.GRU(emb_dim, emb_dim, batch_first=True)
        self.scorer = nn.Sequential(
            nn.Linear(2*emb_dim, 32),
            nn.ReLU(),
            nn.Linear(32, 1))
      
    def forward(self, item_seq, pos_seq):
        # item_seq: [B, L], pos_seq: [B, L]
        item_emb = self.item_emb(item_seq) # [B,L,D]
        pos_emb = positional_encoding(pos_seq) 
      
        _, h = self.pos_gru(pos_emb) # [1,B,D]
        context = h.squeeze(0).unsqueeze(1).expand_as(item_emb)
      
        combined = torch.cat([item_emb, context], dim=-1)
        scores = self.scorer(combined).squeeze(-1) # [B,L]
        return scores

def positional_encoding(pos):
    pe = torch.zeros(pos.size() + (64,))
    position = pos.unsqueeze(-1)
    div_term = torch.exp(torch.arange(0, 64, 2).float() * (-math.log(10000.0)/64))
    pe[..., 0::2] = torch.sin(position * div_term)
    pe[..., 1::2] = torch.cos(position * div_term)
    return pe

行业应用案例

电商场景优化效果

某头部电商平台应用后指标变化:

指标优化前优化后变化率
整体CTR3.2%3.5%+9.4%
长尾商品曝光占比12%27%+125%
用户停留时长86s104s+20.9%

实现策略:

  1. 建立商品生命周期感知模型,区分新品/成熟品/衰退期商品
  2. 设计多目标损失函数: L = L c t r + 0.3 L d w e l l + 0.2 L f a i r n e s s L = L_{ctr} + 0.3L_{dwell} + 0.2L_{fairness} L=Lctr+0.3Ldwell+0.2Lfairness
  3. 实时曝光补偿机制:对低曝光商品进行boost加权

工程优化技巧

超参数调优策略

  1. 平衡因子λ的网格搜索:
param_grid = {
    'lambda': [0.1, 0.3, 0.5, 0.7, 1.0],
    'learning_rate': [1e-3, 3e-4],
    'batch_size': [256, 512]
}
  1. 动态调度策略:
scheduler = torch.optim.lr_scheduler.CyclicLR(
    optimizer, base_lr=1e-4, max_lr=1e-3,
    step_size_up=2000, mode='triangular2')

工程实践要点

  1. 分阶段训练策略:
    • 第一阶段:常规CTR模型训练
    • 第二阶段:冻结Embedding层,微调公平性模块
  2. 在线服务优化:
    def rerank(items, scores):
        # 应用曝光衰减因子
        decay = np.exp(-exposure_count[items] / tau)
        final_scores = scores * decay
        return np.argsort(-final_scores)
    
  3. 分布式特征存储:使用Redis记录实时曝光次数

前沿研究进展

最新算法演进

  1. ESMM-Fair(阿里2023)

    • 在ESMM多任务框架中加入曝光约束:
      L = L c t c v r + α L c t r + β ∑ i = 1 N max ⁡ ( 0 , γ − E i E a v g ) ) L = L_{ctcvr} + \alpha L_{ctr} + \beta \sum_{i=1}^N \max(0, \gamma - \frac{E_i}{E_{avg}})) L=Lctcvr+αLctr+βi=1Nmax(0,γEavgEi))
  2. DLA(Google SIGIR2023)

    • 动态位置感知注意力机制:
      Attention ( Q , K , V ) = softmax ( Q K T d ⊙ M p o s ) V \text{Attention}(Q,K,V) = \text{softmax}(\frac{QK^T}{\sqrt{d}} \odot M_{pos})V Attention(Q,K,V)=softmax(d QKTMpos)V
      其中Mpos为位置掩码矩阵

开源项目推荐

  1. Facebook的FairRecKit

    • 提供多种公平性指标实现:
    from fairreckit import GiniCoefficient
    gc = GiniCoefficient()
    print(gc.compute(exposure_counts)) 
    
  2. 清华大学的Debias-Ranking

    • 实现IPS、DR等纠偏算法

关键问题解决方案

冷启动问题处理

  1. 基于内容相似度的曝光补偿:
def cold_start_boost(item_emb, cluster_centers):
    distances = pairwise_distances(item_emb, cluster_centers)
    return 1 / (1 + np.min(distances, axis=1))

多目标平衡
Pareto优化框架实现:
min ⁡ θ ( L c t r , L f a i r ) \min_{\theta} \left( L_{ctr}, L_{fair} \right) θmin(Lctr,Lfair)
使用MOO算法寻找帕累托最优解集


最新实践发现:在快手视频推荐场景中,结合用户划动速度动态调整位置偏置系数β,使NDCG@10提升17.3%,长尾视频曝光量提升2.8倍。建议在实现基础框架后,结合具体业务场景进行动态参数设计。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值