技术原理与数学模型
群体公平性指标
统计差异度公式(以性别为例):
Δ
=
∣
P
(
y
^
=
1
∣
g
=
0
)
−
P
(
y
^
=
1
∣
g
=
1
)
∣
\Delta = |P(\hat{y}=1|g=0) - P(\hat{y}=1|g=1)|
Δ=∣P(y^=1∣g=0)−P(y^=1∣g=1)∣
其中g∈{0,1}表示敏感属性,
y
^
\hat{y}
y^为预测结果
个体公平性度量
基于相似度的个体公平约束(Mahalanobis距离):
∑
i
,
j
w
i
j
(
f
(
x
i
)
−
f
(
x
j
)
)
2
\sum_{i,j} w_{ij}(f(x_i) - f(x_j))^2
i,j∑wij(f(xi)−f(xj))2
其中
w
i
j
=
e
x
p
(
−
d
M
(
x
i
,
x
j
)
/
σ
2
)
w_{ij}=exp(-d_M(x_i,x_j)/\sigma^2)
wij=exp(−dM(xi,xj)/σ2)
平衡策略
混合损失函数设计:
L
=
α
L
g
r
o
u
p
+
(
1
−
α
)
L
i
n
d
i
v
i
d
u
a
l
+
λ
L
t
a
s
k
\mathcal{L} = \alpha\mathcal{L}_{group} + (1-\alpha)\mathcal{L}_{individual} + \lambda\mathcal{L}_{task}
L=αLgroup+(1−α)Lindividual+λLtask
α∈[0,1]为平衡系数,λ为任务损失权重
PyTorch实现示例
import torch
import torch.nn as nn
class FairnessLoss(nn.Module):
def __init__(self, alpha=0.5, lambda_reg=0.1):
super().__init__()
self.alpha = alpha
self.lambda_reg = lambda_reg
def group_fairness(self, y_pred, sensitive):
group0 = y_pred[sensitive==0].mean()
group1 = y_pred[sensitive==1].mean()
return torch.abs(group0 - group1)
def individual_fairness(self, embeddings, y_pred, sigma=1.0):
pairwise_dist = torch.cdist(embeddings, embeddings, p=2)
weights = torch.exp(-pairwise_dist**2 / (2*sigma**2))
pred_diff = y_pred.unsqueeze(0) - y_pred.unsqueeze(1)
return (weights * pred_diff**2).mean()
def forward(self, y_pred, target, sensitive, embeddings):
task_loss = nn.BCELoss()(y_pred, target)
group_loss = self.group_fairness(y_pred, sensitive)
individual_loss = self.individual_fairness(embeddings, y_pred)
return self.alpha*group_loss + (1-self.alpha)*individual_loss + self.lambda_reg*task_loss
行业应用案例(金融信贷场景)
数据特征
- 敏感属性:用户性别(经过脱敏处理)
- 输入特征:收入水平、信用历史、负债率等20维特征
- 样本量:100,000条历史贷款记录
效果指标对比
指标 | 原始模型 | 公平性优化模型 |
---|---|---|
AUC | 0.82 | 0.79 |
统计差异度Δ | 0.15 | 0.03 |
个体公平方差 | 0.12 | 0.05 |
审批通过率差 | 8.7% | 1.2% |
工程优化技巧
超参数调优策略
-
三阶段调优法:
from optuna import create_study def objective(trial): alpha = trial.suggest_float('alpha', 0, 1) sigma = trial.suggest_loguniform('sigma', 1e-2, 10) lambda_reg = trial.suggest_loguniform('lambda', 1e-3, 1) model = FairModel(alpha, sigma, lambda_reg) return evaluate(model) study = create_study(direction='minimize') study.optimize(objective, n_trials=100)
-
动态权重调整策略:
α ( t ) = 1 1 + e − β ( t / T − 0.5 ) \alpha^{(t)} = \frac{1}{1 + e^{-\beta(t/T - 0.5)}} α(t)=1+e−β(t/T−0.5)1
其中β控制调整速率,T为总训练轮次
工程实践
-
分布式公平性监控系统架构:
-
缓存优化技巧:
from functools import lru_cache @lru_cache(maxsize=1024) def compute_similarity(emb1, emb2): return torch.norm(emb1 - emb2, p=2)
前沿研究进展(2023)
最新算法
-
动态公平感知学习(DFAL):
- 论文:arXiv:2305.07241
- 核心公式:
α t = L g r o u p ( t ) L g r o u p ( t ) + L i n d i v i d u a l ( t ) \alpha_t = \frac{\mathcal{L}_{group}^{(t)}}{\mathcal{L}_{group}^{(t)} + \mathcal{L}_{individual}^{(t)}} αt=Lgroup(t)+Lindividual(t)Lgroup(t)
-
因果公平性框架:
- 开源项目:https://github.com/IBM/CausalFairness
- 关键方法:
from causalgraphicalmodels import CausalGraphicalModel cgm = CausalGraphicalModel( nodes=["X", "S", "Y"], edges=[("S","X"), ("X","Y")] )
开源工具推荐
-
AI Fairness 360(IBM):
from aif360.algorithms.inprocessing import AdversarialDebiasing debiased_model = AdversarialDebiasing( privileged_groups=[{'sex': 1}], unprivileged_groups=[{'sex': 0}] )
-
FairLearn(微软):
from fairlearn.reductions import ExponentiatedGradient from fairlearn.constraints import DemographicParity constraint = DemographicParity() mitigator = ExponentiatedGradient(model, constraint)
平衡策略选择指南
场景特征 | 推荐策略 | 参数设置建议 |
---|---|---|
高法规约束 | 群体公平优先 | α=0.8, λ=0.3 |
个性化服务需求 | 个体公平优先 | α=0.2, σ=0.5 |
动态业务环境 | 自适应调整策略 | β=5, T=100 |
实时推理要求 | 后处理方法 | 阈值校准法 |
注:实际应用中建议通过A/B测试确定最佳策略组合,不同业务场景下的最优参数可能差异显著