关系抽取
文章平均质量分 92
爱吃腰果的李小明
这个作者很懒,什么都没留下…
展开
-
同义词抽取:从知识库中自动发现同义词的方法
原论文:《Automatic Synonym Discovery with Knowledge Bases》背景知识同义词抽取是一种NLP领域下游任务使用广泛的基础任务,可以用于实体归一、融合,实体链接,query改写,提高召回等任务。现有的方法有:1)直接利用Freebase, WordNet等知识库直接扩充,但这对于领域的实体覆盖率很低;2)人工维护同义词典,成本非常高;3)监督/弱监督方法,训练一个同义词分类器,检测出固定的句式pattern来挖掘同义词,但也需要依赖人工精细的选择一些种子训练原创 2022-04-19 21:38:09 · 1733 阅读 · 0 评论 -
关系抽取新SOTA: 《A Frustratingly Easy Approach for Joint Entity and Relation Extraction》论文笔记
一、前言关系抽取作为知识图谱三元组抽取任务中最最重要的算法,一直受到工业界和学术界的广泛研究。关系抽取任务要做的是识别文本中的实体,并对相应的实体词预测正确的关系。其主要可以归纳为两种主要的技术框架:1. pipeline方式的抽取:即先抽取实体,在预测已抽取实体之间存在的关系2. joint方式的抽取:即实体和关系的联合抽取模式由于pipeline抽取方法存在的误差积累、冗余实体计算、实体关系抽取任务交互缺失等问题,近些年来的SOTA模型的关注点都在于各类joint模型的改造,如共享参数的原创 2021-04-27 14:16:01 · 1302 阅读 · 0 评论