1 什么是 DataX
DataX 是阿里巴巴开源的一个异构数据源离线同步工具,致力于实现包括关系型数据库(MySQL、Oracle 等)、HDFS、Hive、ODPS、HBase、FTP 等各种异构数据源之间稳定高效的数据同步功能。
为了解决异构数据源同步问题,DataX 将复杂的网状的同步链路变成了星型数据链路,DataX 作为中间传输载体负责连接各种数据源。当需要接入一个新的数据源的时候,只需要将此数据源对接到 DataX,便能跟已有的数据源做到无缝数据同步
3 支持的数据源
DataX 目前已经有了比较全面的插件体系,主流的 RDBMS 数据库、NOSQL、大数据计算系统都已经接入
4 框架设计
- Reader:数据采集模块,负责采集数据源的数据,将数据发送给Framework。
- Writer:数据写入模块,负责不断向Framework取数据,并将数据写入到目的端。
- Framework:用于连接reader和writer,作为两者的数据传输通道,并处理缓冲,流控,并发,数据转换等核心技术问题
5 运行原理
- Job:单个作业的管理节点,负责数据清理、子任务划分、TaskGroup监控管理。
- Task:由Job切分而来,是DataX作业的最小单元,每个Task负责一部分数据的同步工作。
- Schedule:将Task组成TaskGroup,单个TaskGroup的并发数量为5。
- TaskGroup:负责启动Task。
举例来说,用户提交了一个 DataX 作业,并且配置了 20 个并发,目的是将一个 100 张分表的 mysql 数据同步到 odps 里面。 DataX 的调度决策思路是:
1)DataXJob 根据分库分表切分成了 100 个 Task。
2)根据 20 个并发,DataX 计算共需要分配 4 个 TaskGroup。
3)4 个 TaskGroup 平分切分好的 100 个 Task,每一个 TaskGroup 负责以 5 个并发共计运行 25 个 Task。
1.6 与 Sqoop 的对比
功能 | DataX | Sqoop |
运行模式 | 单进程多线程 | MR |
MySQL读写 | 单机压力大;读写粒度容易控制 | MR模式重,写出错处理麻烦 |
Hive读写 | 单机压力大 | 很好 |
文件格式 | orc支持 | orc不支持,可添加 |
分布式 | 不支持,可以通过调度系统规避 | 支持 |
流控 | 有流控功能 | 需要定制 |
统计信息 | 已有一些统计,上报需定制 | 没有,分布式的数据收集不方便 |
数据校验 | 在core部分有校验功能 | 没有,分布式的数据收集不方便 |
监控 | 需要定制 | 需要定制 |
第3章 使用案例
3.2 读取 MySQL 中的数据存放到 HDFS
mysqlreader 参数解析:
hdfswriter 参数解析:
3.2.2 准备数据
1)创建 student 表
mysql> create database datax;
mysql> use datax;
mysql> create table student(id int,name varchar(20));
2)插入数据
mysql> insert into student values(1001,'zhangsan'),(1002,'lisi'),(1003,'wangwu');
3.2.3 编写配置文件
[atguigu@hadoop102 datax]$ vim /opt/module/datax/job/mysql2hdfs.json
{
"job": {
"content": [
{
"reader": {
"name": "mysqlreader",
"parameter": {
"column": [
"id",
"name"
],
"connection": [
{
"jdbcUrl": [
"jdbc:mysql://hadoop102:3306/datax"
],
"table": [
"student"
]
}
],
"username": "root",
"password": "000000"
}
},
"writer": {
"name": "hdfswriter",
"parameter": {
"column": [
{
"name": "id",
"type": "int"
},
{
"name": "name",
"type": "string"
}
],
"defaultFS": "hdfs://hadoop102:9000",
"fieldDelimiter": "\t",
"fileName": "student.txt",
"fileType": "text",
"path": "/",
"writeMode": "append"
}
}
}
],
"setting": {
"speed": {
"channel": "1"
}
}
}
}
3.2.4 执行任务
[atguigu@hadoop102 datax]$ bin/datax.py job/mysql2hdfs.json
2019-05-17 16:02:16.581 [job-0] INFO JobContainer -
任务启动时刻 : 2019-05-17 16:02:04
任务结束时刻 : 2019-05-17 16:02:16
任务总计耗时 : 12s
任务平均流量 : 3B/s
记录写入速度 : 0rec/s
读出记录总数 : 3
读写失败总数 : 0
3.2.5 查看 hdfs
注意:HdfsWriter 实际执行时会在该文件名后添加随机的后缀作为每个线程写入实际文件名。
3.2.6 关于 HA 的支持
"hadoopConfig":{
"dfs.nameservices": "ns",
"dfs.ha.namenodes.ns": "nn1,nn2",
"dfs.namenode.rpc-address.ns.nn1": "主机名:端口",
"dfs.namenode.rpc-address.ns.nn2": "主机名:端口",
"dfs.client.failover.proxy.provider.ns":
"org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider"
}
3.3 读取 HDFS 数据写入 MySQL
1)将上个案例上传的文件改名
[atguigu@hadoop102 datax]$ hadoop fs -mv /student.txt* /student.txt
3)创建配置文件
[atguigu@hadoop102 datax]$ vim job/hdfs2mysql.json
{
"job": {
"content": [
{
"reader": {
"name": "hdfsreader",
"parameter": {
"column": [
"*"
],
"defaultFS": "hdfs://hadoop102:9000",
"encoding": "UTF-8",
"fieldDelimiter": "\t",
"fileType": "text",
"path": "/student.txt"
}
},
"writer": {
"name": "mysqlwriter",
"parameter": {
"column": [
"id",
"name"
],
"connection": [
{
"jdbcUrl": "jdbc:mysql://hadoop102:3306/datax",
"table": [
"student2"
]
}
],
"password": "000000",
"username": "root",
"writeMode": "insert"
}
}
}
],
"setting": {
"speed": {
"channel": "1"
}
}
}
}
4)在 MySQL 的 datax 数据库中创建 student2
mysql> use datax;
mysql> create table student2(id int,name varchar(20));
5)执行任务
[atguigu@hadoop102 datax]$ bin/datax.py job/hdfs2mysql.json
2019-05-17 16:21:53.616 [job-0] INFO JobContainer -
任务启动时刻 : 2019-05-17 16:21:41
任务结束时刻 : 2019-05-17 16:21:53
任务总计耗时 : 11s
任务平均流量 : 3B/s
记录写入速度 : 0rec/s
读出记录总数 : 3
读写失败总数 : 0
6)查看 student2 表
mysql> select * from student2;
+------+----------+
| id | name |
+------+----------+
| 1001 | zhangsan |
| 1002 | lisi |
| 1003 | wangwu |
+------+----------+
3 rows in set (0.00 sec)