Redis本质上是一个Key-Value类型的内存数据库,整个数据库统统加载在内存当中进行操作,定期通过异步操作把数据库数据flush到硬盘上进行保存。
因为是纯内存操作,Redis的性能非常出色,每秒可以处理超过 10万次读写操作,是已知性能最快的Key-Value DB,此外单个value的最大限制是1GB,
一. Redis简介
Redis是一个开源的内存中的数据结构存储系统,它可以用作数据库、缓存和消息中间件。 它支持多种类型的数据结构,如 字符串(strings), 散列(hashes), 列表(lists), 集合(sets), 有序集合(sorted sets)等。
二. 为什么Redis这么快
Redis是一个开源的使用ANSI C语言编写、遵守BSD协议、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库。而由于其高吞吐、速度快等优势被各大互联网用作缓存数据库,但是了解过Redis的人会发现,其实Redis内部是单线程处理,所以当面试官问完一波Redis的基本概念,拓展到分布式之后,就会问为什么单线程的Redis这么快。
在此先说下原因,原因主要有:
1、Redis是基于内存的,内存的读写是非常快的
(计算机读写速度由慢到快:Remote Disk(远程磁盘)->Local Disk(本地磁盘)->Main Memory(主存)->L2 Cache(二级缓存)->L1 Cache(一级缓存)->Register(内存))
2、Redis是单线程的,省去了很多上下文切换线程的时间
采用单线程,避免了不必要的上下文切换和竞争条件,也不存在多进程或者多线程导致的切换而消耗CPU,不用去考虑各种锁的问题,不存在加锁释放锁操作,没有因为可能出现死锁而导致的性能消耗
(假设客户端有多个socket请求,通过IO多路复用程序将每个socket请求放入到一个队列里,然后单个线程对出队列socke请求发送给Redis内部的文件事件分派器进行具体的应答操作,由于单个线程处理出队请求,避免了多线程的线程切换和竞态消耗)
3、非阻塞IO,Redis采用epoll作为I/O多路复用技术的实现
(非阻塞IO,epoll性能对比select、poll性能最佳,具体介绍可百度)
2、数据结构简单,对数据操作也简单,Redis中的数据结构是专门进行设计的。
3、使用底层模型不同,它们之间底层实现方式以及与客户端之间通信的应用协议不一样,Redis直接自己构建了VM 机制 ,因为一般的系统调用系统函数的话,会浪费一定的时间去移动和请求。
三. 多路I/O复用模型
多路I/O复用模型是利用 select、poll、epoll 可以同时监察多个流的 I/O 事件的能力,在空闲的时候,会把当前线程阻塞掉,当有一个或多个流有 I/O 事件时,就从阻塞态中唤醒,于是程序就会轮询一遍所有的流(epoll 是只轮询那些真正发出了事件的流),并且只依次顺序的处理就绪的流,这种做法就避免了大量的无用操作。
这里“多路”指的是多个网络连接,“复用”指的是复用同一个线程。采用多路 I/O 复用技术可以让单个线程高效的处理多个连接请求(尽量减少网络 IO 的时间消耗),且 Redis 在内存中操作数据的速度非常快,也就是说内存内的操作不会成为影响Redis性能的瓶颈,主要由以上几点造就了 Redis 具有很高的吞吐量。
下面举一个例子,模拟一个tcp服务器处理30个客户socket。假设你是一个老师,让30个学生解答一道题目,然后检查学生做的是否正确,你有下面几个选择:
- 第一种选择:按顺序逐个检查,先检查A,然后是B,之后是C、D。。。这中间如果有一个学生卡主,全班都会被耽误。这种模式就好比,你用循环挨个处理socket,根本不具有并发能力。
- 第二种选择:你创建30个分身,每个分身检查一个学生的答案是否正确。 这种类似于为每一个用户创建一个进程或者线程处理连接。
- 第三种选择,你站在讲台上等,谁解答完谁举手。这时C、D举手,表示他们解答问题完毕,你下去依次检查C、D的答案,然后继续回到讲台上等。此时E、A又举手,然后去处理E和A。。。 这种就是IO复用模型,Linux下的select、poll和epoll就是干这个的。将用户socket对应的fd注册进epoll,然后epoll帮你监听哪些socket上有消息到达,这样就避免了大量的无用操作。此时的socket应该采用非阻塞模式。这样,整个过程只在调用select、poll、epoll这些调用的时候才会阻塞,收发客户消息是不会阻塞的,整个进程或者线程就被充分利用起来,这就是事件驱动,所谓的reactor模式。
四. 单进程单线程好处
- 代码更清晰,处理逻辑更简单
- 不用去考虑各种锁的问题,不存在加锁释放锁操作,没有因为可能出现死锁而导致的性能消耗
- 不存在多进程或者多线程导致的切换而消耗CPU
一、Redis 持久化
一、RDB 是一种快照模式,快照(snapshotting)
RDB持久化是指在指定的时间间隔内将内存中的数据集快照写入磁盘。
快照文件存在dbfilename选项指定的文件中,并存储在dir指定的路径,根据默认配置即./dump.rdb
也是默认的持久化方式,这种方式是就是将内存中数据以快照的方式写入到二进制文件中,默认的文件名为dump.rdb。
可以通过配置设置自动做快照持久化的方式。我们可以配置redis在n秒内如果超过m个key被修改就自动做快照,下面是默认的快照保存配置
在 redis.conf 配置文件中
save 900 1 #900秒内如果超过1个key被修改,则发起快照保存
save 300 10 #300秒内容如超过10个key被修改,则发起快照保存
save 60 10000 #当”60秒之内有10000次写入”这个条件被满足时,Redis就会自动出发BGSAVE命令,
如果设置了多个save配置选项,当任意一个满足时,Redis就会出发BGSAVE。默认行为配置了三个阙值。
RDB文件保存过程

RDB 特点:
RDB 有 2 种持久方式,同步 save 模式和异步 bgsave 模式。
1、由于 save 是同步的,所以可以保证数据一致性,而 bgsave 则不能。
3、save 可以在客户端显式触发,也可以在 shutdown 时自动触发;
bgsave 可以在客户端显式触发,也可以通过配置由定时任务触发,也可以在 slave 节点触发。
4、save 导致 redis 同步阻塞,save操作是在主线程中保存快照的,由于redis是用一个主线程来处理所有 client的请求,这种 方式会阻塞所有client请求。所以不推荐使用。
bgsave 则不会导致阻塞,但也有缺点:在 fork 时,需要增加内存服务器开销,因为当内存不够时,将使用虚拟内存,导致阻 塞 Redis 运行。所以,需要保证空闲内存足够。
5、默认执行 shutdown 时,如果没有开启 AOF,则自动执行 bgsave。
6、每次的 RDB 文件都是替换的。
bgsave
bgSave则是调用fork,产生子进程,父进程继续处理请求。
子进程将数据写入临时文件,并在写完后,替换原有的.rdb文件。然后子进程退出。
Fork发生时,父子进程内存共享,所以为了不影响子进程做数据快照,在这期间修改的数据,将会被复制一份,而不进共享内存。 所以说,RDB所持久化的数据,是Fork发生时的数据。在这样的条件下进行持久化数据,如果因为某些情况宕机,则会丢失一段时间的数据。
如果你的实际情况对数据丢失没那么敏感,丢失的也可以从传统数据库中获取或者说丢失部分也无所谓,那么你可以选择RDB持久化方式。
优势
- 一旦采用该方式,那么你的整个Redis数据库将只包含一个文件,这样非常方便进行备份。比如你可能打算没1天归档一些数据。
- 方便备份,我们可以很容易的将一个一个RDB文件移动到其他的存储介质上
- RDB 在恢复大数据集时的速度比 AOF 的恢复速度要快。Redis 加载 RDB 恢复数据远远快于 AOF。 (在redis重启后,自动读取其中文件,据悉,通常情况下一千万的字符串类型键,1GB的快照文件,同步到内存中的 时间是20-30秒)
- RDB 可以最大化 Redis 的性能:父进程在保存 RDB 文件时唯一要做的就是 fork 出一个子进程,然后这个子进程就会处理接下来的所有保存工作,父进程无须执行任何磁盘 I/O 操作。
劣势
- 1、无法秒级持久化。
如果你需要尽量避免在服务器故障时丢失数据,那么 RDB 不适合你。 虽然 Redis 允许你设置不同的保存点(save point)来控制保存 RDB 文件的频率, 但是, 因为RDB 文件需要保存整个数据集的状态, 所以它并不是一个轻松的操作。 因此你可能会至少 5 分钟才保存一次 RDB 文件。 在这种情况下, 一旦发生故障停机, 你就可能会丢失好几分钟的数据。
- 2、消耗 CPU,耗时。
每次保存 RDB 的时候,Redis 都要 fork() 出一个子进程,并由子进程来进行实际的持久化工作。 在数据集比较庞大时, fork() 可能会非常耗时,造成服务器在某某毫秒内停止处理客户端; 如果数据集非常巨大,并且 CPU 时间非常紧张的话,那么这种停止时间甚至可能会长达整整一秒。 虽然 AOF 重写也需要进行 fork() ,但无论 AOF 重写的执行间隔有多长,数据的耐久性都不会有任何损失。
二、AOF持久化 AOF(append only file) 是目前 Redis 持久化的主流方式。
将被执行的写命令写到AOF文件的末尾(默认是 appendonly.aof)。以此来记录数据的变化。
Redis只要从头到位重新执行一次AOF文件包含的所有命令,就可以恢复AOF文件所记录的数据集
当redis重启时会通过重新执行文件中保存的写命令来在内存中重建整个数据库的内容。
appendonly yes //启用aof持久化方式
# 缓冲区同步策略,由参数 appendfsync 控制,一共3种
appendfsync everysec //每秒钟强制写入磁盘一次,在性能和持久化方面做了很好的折中,推荐,redis默认使用everysec
# appendfsync no //完全依赖os,让操作系统来决定应该何时进行同步,默认30s一次,性能最好,持久化没保证
# appendfsync always //每次收到写命令就立即强制写入磁盘,最慢的,但是保证完全的持久化,不推荐
1、fork 子进程(类似 bgsave)
2、主进程会写到2个缓冲区,一个是原有的 “AOF 缓存区”,一个是专门为子进程准备的 “AOF 重写缓冲区”;
3、子进程写到到新的 AOF 文件中,批量的,默认 32m;写完后通知主进程。
4、主进程把“AOF 重写缓冲区”的数据写到新 AOF 文件中。
5、将新的 AOF 文件替换老文件。
优势
-
使用 AOF 持久化会让 Redis 变得非常耐久(much more durable): AOF 的默认策略为每秒钟 fsync 一次,在这种配置下,Redis 仍然可以保持良好的性能,并且就算发生故障停机,也最多只会丢失一秒钟的数据( fsync 会在后台线程执行,所以主线程可以继续努力地处理命令请求)。
-
AOF 文件是一个只进行追加操作的日志文件(append only log), 因此对 AOF 文件的写入不需要进行 seek , 即使日志因为某些原因而包含了未写入完整的命令(比如写入时磁盘已满,写入中途停机,等等), redis-check-aof 工具也可以轻易地修复这种问题。
Redis 可以在 AOF 文件体积变得过大时,自动地在后台对 AOF 进行重写: 重写后的新 AOF 文件包含了恢复当前数据集所需的最小命令集合。 整个重写操作是绝对安全的,因为 Redis 在创建新 AOF 文件的过程中,会继续将命令追加到现有的 AOF 文件里面,即使重写过程中发生停机,现有的 AOF 文件也不会丢失。 而一旦新 AOF 文件创建完毕,Redis 就会从旧 AOF 文件切换到新 AOF 文件,并开始对新 AOF 文件进行追加操作。 -
AOF 文件有序地保存了对数据库执行的所有写入操作, 这些写入操作以 Redis 协议的格式保存, 因此 AOF 文件的内容非常容易被人读懂, 对文件进行分析(parse)也很轻松。 导出(export) AOF 文件也非常简单: 举个例子, 如果你不小心执行了 FLUSHALL 命令, 但只要 AOF 文件未被重写, 那么只要停止服务器, 移除 AOF 文件末尾的 FLUSHALL 命令, 并重启 Redis , 就可以将数据集恢复到 FLUSHALL 执行之前的状态。
劣势
-
对于相同的数据集来说,AOF 文件的体积通常要大于 RDB 文件的体积。AOF文件过大会影响Master重启的恢复速度
-
根据所使用的 fsync 策略,AOF 的速度可能会慢于 RDB 。 在一般情况下, 每秒 fsync 的性能依然非常高, 而关闭 fsync 可以让 AOF 的速度和 RDB 一样快, 即使在高负荷之下也是如此。 不过在处理巨大的写入载入时,RDB 可以提供更有保证的最大延迟时间(latency)。
-
AOF 在过去曾经发生过这样的 bug : 因为个别命令的原因,导致 AOF 文件在重新载入时,无法将数据集恢复成保存时的原样。 (举个例子,阻塞命令 BRPOPLPUSH 就曾经引起过这样的 bug 。) 测试套件里为这种情况添加了测试: 它们会自动生成随机的、复杂的数据集, 并通过重新载入这些数据来确保一切正常。 虽然这种 bug 在 AOF 文件中并不常见, 但是对比来说, RDB 几乎是不可能出现这种 bug 的。
-
持久化文件会变的越来越大。例如我们调用incr test命令100次,文件中必须保存全部的100条命令,其实有99条都是多余的。因为要恢复数据库的状态其实文件中保存一条set test 100就够了。
抉择
一般来说, 如果想达到足以媲美 PostgreSQL 的数据安全性, 你应该同时使用两种持久化功能。
如果你非常关心你的数据, 但仍然可以承受数分钟以内的数据丢失, 那么你可以只使用 RDB 持久化。
其余情况选择AOF
二、Redis启动加载过程 https://www.cnblogs.com/cuijl/p/7992433.html
1. 初始化全局服务器配置
2. 加载配置文件(如果指定了配置文件,否则使用默认配置)
3. 初始化服务器
4. 加载数据库
5. 网络监听
初始化全局服务器配置
通过initServerConfig()函数完成,主要是初始化server变量
初始化的内容包括下面几个方面:
1. 网络监听相关,如绑定地址,TCP端口等
2. 虚拟内存相关,如swap文件、page大小等
3. 保存机制,多长时间内有多少次更新才进行保存
4. 复制相关,如是否是slave,master地址、端口
5. Hash相关设置
6. 初始化命令表
加载配置文件
如果指定了配置文件,Redis使用loadServerConfig()函数加载配置文件,使用标准I/O库打开配置文件,循环读取每一行然后覆盖上一步进行的默认配置。
初始化服务器
初始化服务器的工作在initServer()函数中,主要是完成前面未完成的工作,继续对server变量初始化,如设置信号处理、创建clients、slaves列表,创建Pub/Sub通道列表,同时还会创建共享对象:
加载数据库
在完成了上面的所有的初始化工作之后,Redis开始加载数据到内存中,如果启用了appendonly了,则Redis从appendfile加载数据,否则就从dbfile加载数据。
1. 从appendfile中加载数据:loadAppendOnlyFile()函数
既然appendonly.aof中保存了所有写入数据的请求命令,那么在加载数据的时候只要重新执行一遍这些命令即可。
2. 从dbfile中加载数据:rdbLoad()函数
如果Redis没有开启appendonly,就需要从数据库文件中加载数据到内存,基本步骤如下:
a. 处理SELECT命令,即选择数据库
b. 读取key
c. 读取value
d. 检测key是否过期
e. 添加新的对象到哈希表
f. 设置过期时间(如果需要)
g. 如果开启了VM,处理swap操作
三、高可用分布式
-
分布式(插入数据)
Redis集群是一个由多个Redis服务器组成的分布式网络服务器群,集群中的各个服务器被称为节点(node),这些节点会相互连接并进行通信。
比如我们库有900条用户数据,有3个redis节点,将900条分成3份,分别存入到3个redis节点
分区
redis集群使用了哈希分区,redis cluster采用了哈希分区的“虚拟槽分区”方式,
RedisCluster采用此分区,所有的键根据哈希函数(CRC16[key]&16383)映射到0-16383槽内,共16384个槽位,每个节点维护部分槽及槽所映射的键值数据
CRC即循环冗余校验码(Cyclic Redundancy Check)
哈希函数: Hash()=CRC16[key]&16383 按位与
Key:a 计算a的hash值,例如值为100,100这个槽在server1上,所以a应该放到server1.
-
高可用_主从复制
redis 集群的每个节点都有两种角色可选,一个是主节点(master node),另一个是从节点(slavenode),其中主节点用于储存数据,而从节点则是某个主节点的复制品。
通过持久化保证 Redis 在服务器重启的情况下数据也不会丢失。但数据在一台服务器上,如果服务器的硬盘坏了,也会导致数据丢失。为了避免单点故障,Redis 提供了主从复制高可用方案。在正常情况下主机对外提供服务,并把数据同步到备机,当主机宕机后,备机立刻开始服务。
主从复制结构:
- 1个 master 可以有多个 slave
- 1个 slave 只能有1个 master
- 数据流向单向 master -> slave
我们发现这2个实例已经完成了数据的同步。
-
HA(高可用方案配置)
- 主从切换, 自动切换(哨兵)
Redis 2.4+自带了一个HA实现Sentinel。
哨兵可以对master和slave进行监控,并在master出现故障的时候,能自动将slave切换成master。
Redis Sentinel 是一个分布式系统(功能类似zookeeper),可以在整个redis主从架构中运行多个 Sentinel 进程(progress)。建议至少要保证有两个哨兵在运行,要不然物理机宕机后哨兵进程也不存在了,就无法进行主从切换。
Redis主从读写分离?
淘汰策略
redis.conf 中的过期淘汰配置
# MAXMEMORY POLICY: how Redis will select what to remove when maxmemory
# is reached. You can select among five behaviors:
在内存占用达到了maxmemory后,再向Redis写入数据时,Redis会:
- 根据配置的数据淘汰策略尝试淘汰数据,释放空间
- 如果没有数据可以淘汰,或者没有配置数据淘汰策略,那么Redis会对所有写请求返回错误,但读请求仍然可以正常执行
#最大内存策略:当到达最大使用内存时,你可以在下面5种行为中选择,Redis如何选择淘汰数据库键
#当内存不足以容纳新写入数据时
Redis提供了5种数据淘汰策略:
- volatile-lru:使用LRU算法进行数据淘汰(淘汰上次使用时间最早的,且使用次数最少的key),只淘汰设定了有效期的key
- allkeys-lru:使用LRU算法进行数据淘汰,所有的key都可以被淘汰
- volatile-random:随机淘汰数据,只淘汰设定了有效期的key
- allkeys-random:随机淘汰数据,所有的key都可以被淘汰
- volatile-ttl:淘汰剩余有效期最短的key
最好为Redis指定一种有效的数据淘汰策略以配合maxmemory设置,避免在内存使用满后发生写入失败的情况。
一般来说,推荐使用的策略是volatile-lru,并辨识Redis中保存的数据的重要性。对于那些重要的,绝对不能丢弃的数据(如配置类数据等),应不设置有效期,这样Redis就永远不会淘汰这些数据。对于那些相对不是那么重要的,并且能够热加载的数据(比如缓存最近登录的用户信息,当在Redis中找不到时,程序会去DB中读取),可以设置上有效期,这样在内存不够时Redis就会淘汰这部分数据。
配置方法:
maxmemory-policy volatile-lru #默认是noeviction,即不进行数据淘汰
# volatile-lru -> remove the key with an expire set using an LRU algorithm
# volatile-lru :在设置了过期时间的键空间中,移除最近最少使用的key。这种情况一般是把 redis 既当缓存,又做持久化存储的时候才用。
# allkeys-lru -> remove any key according to the LRU algorithm
# allkeys-lru : 移除最近最少使用的key (推荐)
# volatile-random -> remove a random key with an expire set
# volatile-random : 在设置了过期时间的键空间中,随机移除一个键,不推荐
# allkeys-random -> remove a random key, any key
# allkeys-random : 直接在键空间中随机移除一个键,弄啥叻
# volatile-ttl -> remove the key with the nearest expire time (minor TTL)
# volatile-ttl : 在设置了过期时间的键空间中,有更早过期时间的key优先移除 不推荐
# noeviction -> don't expire at all, just return an error on write operations
# noeviction : 不做过键处理,只返回一个写操作错误。 不推荐
redis数据的轮询规则
https://blog.csdn.net/yajlv/article/details/73467865