分析:
1、确定dp数组及其下标的含义
dp[i]:整数i拆分成至少两个整数和的最大乘积
2、确定递推式
i可拆成两个正整数或者多个正整数,即最大乘积dp[i]可由j*(i-j)或者是j*dp[i-j]得到,那么递推式为:
dp[i]=max(dp[i],max(j*(i-j),j*dp[i-j]));
3、如何初始化
//dp[0]和dp[1]无意义 从dp[2]开始初始化
dp[2] = 1;
4、遍历顺序
从前向后 i从3开始 j从1开始
5、举例推导dp数组n=5时
index: 2 3 4 5
最大乘积: 1 2 4 6
题解:
class Solution {
public:
int integerBreak(int n) {
//定义dp数组 dp[i]为数字i拆分成至少两个整数和的最大乘积
//dp[i]可由j*(i-j)或者i*dp[i-j]得到 即两个数乘或多个数乘
vector<int> dp(n+1);
//初始化dp数组 dp[0]和dp[1]无意义 从dp[2]开始初始化
dp[2] = 1;
//计算dp数组 i在外 j在内 j<i-1
for(int i = 3;i <= n;i++){
for(int j = 1;j < i-1;j++){
dp[i]=max(dp[i],max(j*(i-j),j*dp[i-j]));
}
}
return dp[n];
}
};