因果推断运用到机器学习的思想 2篇论文


在这里插入图片描述

  这里主要涉及机器学习中运用因果推断的思想,论文具体细节过程不详述。

1. 2019《Towards The First Adversarially Robust Neural Network Model on MNIST》

  作者: Lukas Schott1-3∗, Jonas Rauber1-3∗, Matthias Bethge1,3,4†& Wieland Brendel1,3†

  发表: Published as a conference paper at ICLR 2019
在这里插入图片描述

  问题: 针对数据集MNIST分类(0-9的数字图像分类)问题,小的扰动依旧会造成很大误差,目的增加模型的鲁棒性。

  图像分类问题,共k个类,样本x的标签y∈{1,2,…,k}。输入x,求解f(x)=p(y|x),输出f(x)为向量,表示x的预测标签y的概率分布。

  本文模型: Analysis by Synthesis model (ABS) ,利用自编码器(Kingma & Welling, 2013)。

  涉及因果关系: 已知样本x,求概率分布P(class|X=x)转化成学习类条件数据分布P(X|Y)。即利用贝叶斯公式求:
在这里插入图片描述

  p(y)的分布可以用训练集估计。

  P(x|y):利用变分自编码器(variational autoencoders ,VAEs;Kingma & Welling, 2013)(隐变量z)。

补充:

  自编码器: 目的是压缩模型(隐向量z)。输入无标签x向量,经过一个神经网络压缩成z向量,再经过一个神经网络恢复x ̃。

  变分自编码器: 目的是生成模型。输入无标签x向量,经过中间隐变量z,最后生成x ̃。

补充结束

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值