因果推断+机器学习

这里主要涉及机器学习中运用因果推断的思想,论文具体细节过程不详述。
1. 2019《Towards The First Adversarially Robust Neural Network Model on MNIST》
作者: Lukas Schott1-3∗, Jonas Rauber1-3∗, Matthias Bethge1,3,4†& Wieland Brendel1,3†
发表: Published as a conference paper at ICLR 2019
问题: 针对数据集MNIST分类(0-9的数字图像分类)问题,小的扰动依旧会造成很大误差,目的增加模型的鲁棒性。
图像分类问题,共k个类,样本x的标签y真∈{1,2,…,k}。输入x,求解f(x)=p(y|x),输出f(x)为向量,表示x的预测标签y的概率分布。
本文模型: Analysis by Synthesis model (ABS) ,利用自编码器(Kingma & Welling, 2013)。
涉及因果关系: 已知样本x,求概率分布P(class|X=x)转化成学习类条件数据分布P(X|Y)。即利用贝叶斯公式求:
p(y)的分布可以用训练集估计。
P(x|y):利用变分自编码器(variational autoencoders ,VAEs;Kingma & Welling, 2013)(隐变量z)。
【补充:
自编码器: 目的是压缩模型(隐向量z)。输入无标签x向量,经过一个神经网络压缩成z向量,再经过一个神经网络恢复x ̃。
变分自编码器: 目的是生成模型。输入无标签x向量,经过中间隐变量z,最后生成x ̃。
补充结束】