《机器学习实战》笔记(三) 示例1

本文介绍了如何运用k-近邻算法改进约会网站的匹配效果。通过解析datingTestSet2.txt文件获取包含飞行里程数、视频游戏耗时和冰淇淋消耗数量的1000条数据,并进行数据预处理,包括归一化。接着,通过datingClassTest()测试算法性能,最后在classifyPerson()函数中实际应用该算法。
摘要由CSDN通过智能技术生成

使用k-近邻算法改进约会网站的配对效果

 

一、 准备数据:从文本中解析

1.数据:datingTestSet2.txt :一个数据一行,共1000行

  三种特征:飞行里程数 视频游戏耗时 冰淇淋数

 

2.函数:file2matrix(filename):

使用:datingDataMat, datingLabels = file2matrix(‘datingTestSet2.txt’) 

用于处理文本格式文件的函数,将文本格式的数据变为可用于输入模型的数据

如果不是都放在KNN.py里面或者是在命令提示符里面使用用KNN.file2matrix()

# 文本转矩阵
def file2matrix(filename):
    fr = open(filename)                         # 打开文件
    arrayOLines = fr.readlines()                 # readlines()自动将文件内容分析成一个行的列表,该列表可以由 Python 的 for... in ... 结构进行处理
                                                # read
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值