打工日志11.25

在API优化过程中发现,接口初次调用耗时较长,原因是GPU首次计算时间较长,可能是GPU初始化过程导致。通过预执行GPU操作进行初始化,可以解决这个问题。虽然对多数应用影响不大,但对于线上接口服务,首次调用时延尤其重要,建议在服务启动时预先初始化GPU。
摘要由CSDN通过智能技术生成

今天在进行API优化排查的时候发现接口在第一次进行调用的时候的运行耗时明显高于之后的调用。

后来经过排查,其实是因为GPU的第一次调用计算会明显高于之后的计算时间。我觉得可能是因为GPU要初始化的原因?

下面做一个简单的小实验,像这样子的,循环计算多次

import torch
import time

if __name__ == '__main__':
    device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
    for i in range(0, 100):
        st = time.time()
        a1 = torch.rand(9999, 9999).to(device)
        b1 = torch.rand(9999, 9999).to(device)
        torch.mul(a1, b1)
        et = time.time()
        print('In computation {}, the computing operation costs {}ms'.format(str(i), (et-st)))
        time.sleep(2)

输出如下:

In computation 0, the computing operation costs 4.841561555862427ms
In computation 1, the computing operation costs 1.8976020812988281ms
In computation 2, the computing operation costs 1.9691121578216553ms
In computation 3, the computing operation costs 1.8744938373565674ms
In computation 4, the computing operation costs 1.8520243167877197ms
...

但是只要在前面随机进行一下gpu的操作,让GPU初始化完成,时间就正常了。。

import torch
import time
import logging

if __name__ == '__main__':
    device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
    before_laodd = torch.rand(9999, 9999).to(device)
    for i in range(0, 100):
        st = time.time()
        a1 = torch.rand(9999, 9999).to(device)
        b1 = torch.rand(9999, 9999).to(device)
        torch.mul(a1, b1)
        et = time.time()
        print('In computation {}, the computing operation costs {}ms'.format(str(i), (et-st)))
        time.sleep(2)

output:

In computation 0, the computing operation costs 1.9176990985870361ms
In computation 1, the computing operation costs 1.9287288188934326ms
In computation 2, the computing operation costs 1.8840551376342773ms
...

这个看似好像对实际应用没啥影响,但是因为我们是做线上的接口服务,大部分用户在启动服务之后,可能就只调用一次,那么首次的时延就显得非常重要。
做接口的时候,启动服务时要顺便初始化一下GPU呀

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值