Chapter 8 Network Flows

8.1 流,切割和增广路径。网络流问题是一组有广泛的、各种不同的应用的网络流优化问题。图G=[V,R]是一个有两个不同顶点,源点s和汇点t,每条边[v,w]有一个正的容量cap(v,w)。为了方便,如果边[v,w]不是一条边则cap(v,w)=0。图G上的一个流是有以下三个性质的一个实值函数:
(i)反对称性:f(v,w)=-f(w,v),如果f(v,w)>0,就说这是一个从v到w的流。
(ii)容量限制:f(v,w)≤cap(v,w)。如果[v,w]是满足f[v,w)=cap(v,w)的边,就说流使(边)[v,w]饱和。
(iii)流量守恒:对于不是s和t的每一条边有Σw f(v,w)=0。
流f的值|f|是送源点流出的净流量,Σv f(s,v)。最大流问题是发现与一个有最大流的流,称为最大流。这个问题有丰富和优雅的理论,在运筹学和组合数学上广泛的应用。针对这个问题,一系列越来越快的问题已经被发明。网络流理论是线性规划的产物。最初由Ford和Fulkeson发展,他们以该主题写了一本经典的书籍。我们将从复习他们的基本结论开始学习。
在最小生成树问题中,一个关键的概念是切割,在考虑网路流时,我们定义切割X,Y是顶点集合V的一个划分,X和Y=V-X,X包含s,而Y包含t。切割X,Y的容量是∑v∈X,w∈Y cap(v,w)。一个切割的最小容量是一个最小切割。如果f是一个流并且X,Y是一个切割,经过切割的流是f(X,Y)=∑v∈X,w∈Yf(v,w)。
引理 8.1 对于任何流f,通过任何切割X,Y的流等于流f的值。
证明:
f(X,Y)=Σv∈X,w∈Y f(v,w)=

因为流量守恒得知,由反对称性得知
通过容量约束,通过任何切割的流不能超过切割的容量。因此最大流的值不会比最小切割的容量大。最大流最小切割定理表明这两个值是相等的。为了证明这个定理。我们需要几个概念,残存容量是流的一个函数,在给定顶点对上由res(v,w)=cap(v,w)-f(v,w)。我们可以通过增加f(v,w)和相应的减少f(w,v)来从v到w推送额外的res(v,v)单位的的流。流f的残存图是包含顶点集合V,源点s,汇点t,----
流f的一条

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值