1. 批量文件重命名
import os
def batch_rename(path, prefix='', suffix=''):
for i, filename in enumerate(os.listdir(path)):
new_name = f"{prefix}{i:03d}{suffix}{os.path.splitext(filename)[1]}"
old_file = os.path.join(path, filename)
new_file = os.path.join(path, new_name)
os.rename(old_file, new_file)
# 使用示例:
batch_rename('/path/to/your/directory', 'file_', '.txt')
2. 自动邮件发送
import smtplib
from email.mime.text import MIMEText
def send_email(to_addr, subject, content):
smtp_server = 'smtp.example.com'
username = 'your-email@example.com'
password = 'your-password'
msg = MIMEText(content)
msg['Subject'] = subject
msg['From'] = username
msg['To'] = to_addr
server = smtplib.SMTP(smtp_server, 587)
server.starttls()
server.login(username, password)
server.sendmail(username, to_addr, msg.as_string())
server.quit()
# 使用示例:
send_email('receiver@example.com', '每日提醒报告', '报告已生成,请查收....')
3. 数据库操作自动化
import sqlite3
def create_connection(dabase_file):
conn = None
try:
conn = sqlite3.connect(db_file)
print(f"成功连接到数据库:{dabase_file}")
except Error as e:
print(e)
return conn
def insert_data(conn, table_name, data_dict):
keys = ', '.join(data_dict.keys())
values = ', '.join(f"'{v}'" for v in data_dict.values())
sql = f"INSERT INTO {table_name} ({keys}) VALUES ({values});"
try:
cursor = conn.cursor()
cursor.execute(sql)
conn.commit()
print("insert 成功!")
except sqlite3.Error as e:
print(e)
# 使用示例:
conn = create_connection('my_database.db')
data = {'name': 'jiang', 'age': 32}
insert_data(conn, 'users', data)
# 在适当时候关闭数据库连接
conn.close()
4. 定时任务执行
import schedule
import time
def job_to_schedule():
print("当前时间:", time.ctime(), "任务正在执行中")
# 定义每天11点执行任务
schedule.every().day.at("11:00").do(job_to_schedule)
while True:
schedule.run_pending()
time.sleep(1)
5.网页内容自动化抓取
import requests
from bs4 import BeautifulSoup
def fetch_web_content(url):
res = requests.get(url)
if res.status_code == 200:
soup = BeautifulSoup(res.text, 'html.parser')
# 示例提取页面标题
title = soup.find('title').text
return title
else:
return "无法获取网页内容"
# 使用示例:
url = 'https://xxxx.com'
web_title = fetch_web_content(url)
print("网页标题:", web_title)
6. 数据清洗自动化
import pandas as pd
def clean_data(file_path):
df = pd.read_csv(file_path)
# 示例:处理缺失值
df.fillna('N/A', inplace=True)
# 示例:去除重复行
df.drop_duplicates(inplace=True)
# 示例:转换列类型
df['date_column'] = pd.to_datetime(df['date_column'])
return df
# 使用示例:处理 data.csv 文件
cleaned_df = clean_data('data.csv')
print("数据清洗完成!")
7. 图片批量压缩
from PIL import Image
import os
def compress_images(dir_path, quality=90):
for filename in os.listdir(dir_path):
if filename.endswith(".jpg") or filename.endswith(".png"):
img = Image.open(os.path.join(dir_path, filename))
img.save(os.path.join(dir_path, f'compressed_{filename}'), optimize=True, quality=quality)
# 使用示例:
compress_images('/path/to/images', quality=80)
8. 文件内容查找替换
import fileinput
def search_replace_in_files(dir_path, search_text, replace_text):
for line in fileinput.input([f"{dir_path}/*"], inplace=True):
print(line.replace(search_text, replace_text), end='')
# 使用示例:
search_replace_in_files('/path/to/files', 'old_text', 'new_text')
9.日志文件分析
def analyze_log(logfile):
with open(logfile, 'r') as f:
lines = f.readlines()
error_count = 0
for line in lines:
if "ERROR" in line:
error_count += 1
print(f"日志文件中包含 {error_count} 条错误记录。")
# 使用示例:
analyze_log('application.log')
10. 邮件附件批量下载
import imaplib
import email
from email.header import decode_header
import os
def download_attachments(email_addr, password, imap_server, folder='INBOX'):
mail = imaplib.IMAP4_SSL(imap_server)
mail.login(email_addr, password)
mail.select(folder)
result, data = mail.uid('search', None, "ALL")
uids = data[0].split()
for uid in uids:
_, msg_data = mail.uid('fetch', uid, '(RFC822)')
raw_email = msg_data[0][1].decode("utf-8")
email_message = email.message_from_string(raw_email)
for part in email_message.walk():
if part.get_content_maintype() == 'multipart':
continue
if part.get('Content-Disposition') is None:
continue
filename = part.get_filename()
if bool(filename):
file_data = part.get_payload(decode=True)
with open(os.path.join('/path/to/download', filename), 'wb') as f:
f.write(file_data)
mail.close()
mail.logout()
# 使用示例:
download_attachments('youremail@example.com', 'yourpassword', 'imap.example.com')
11. 定时发送报告自动化
import pandas as pd
import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
def generate_report(source, to_addr, subject):
# 假设这里是从数据库或文件中获取数据并生成报告内容
report_content = pd.DataFrame({"Data": [1, 2, 3], "Info": ["A", "B", "C"]}).to_html()
msg = MIMEMultipart()
msg['From'] = 'your-email@example.com'
msg['To'] = to_addr
msg['Subject'] = subject
msg.attach(MIMEText(report_content, 'html'))
server = smtplib.SMTP('smtp.example.com', 587)
server.starttls()
server.login('your-email@example.com', 'your-password')
text = msg.as_string()
server.sendmail('your-email@example.com', to_addr, text)
server.quit()
# 使用示例:
generate_report('data.csv', '目标邮件@example.com', '每日数据报告')
12. locust 自动化性能测试
from locust import HttpUser, task, between
class WebsiteUser(HttpUser):
wait_time = between(5, 15) # 定义用户操作之间的等待时间
@task
def load_test_api(self):
response = self.client.get("/api/data")
assert response.status_code == 200 # 验证返回状态码为200
@task(3) # 指定该任务在总任务中的执行频率是其他任务的3倍
def post_data(self):
data = {"key": "value"}
response = self.client.post("/api/submit", json=data)
assert response.status_code == 201 # 验证数据成功提交后的响应状态码
# 运行Locust命令启动性能测试:
# locust -f your_test_script.py --host=http://your-api-url.com