173. 二叉搜索树迭代器
实现一个二叉搜索树迭代器类BSTIterator ,表示一个按中序遍历二叉搜索树(BST)的迭代器:
- BSTIterator(TreeNode root) 初始化 BSTIterator 类的一个对象。BST 的根节点 root 会作为构造函数的一部分给出。指针应初始化为一个不存在于 BST 中的数字,且该数字小于 BST 中的任何元素。
- boolean hasNext() 如果向指针右侧遍历存在数字,则返回 true ;否则返回 false 。
- int next()将指针向右移动,然后返回指针处的数字。
- 注意,指针初始化为一个不存在于 BST 中的数字,所以对 next() 的首次调用将返回 BST 中的最小元素。
你可以假设 next() 调用总是有效的,也就是说,当调用 next() 时,BST 的中序遍历中至少存在一个下一个数字。
示例:
输入
["BSTIterator", "next", "next", "hasNext", "next", "hasNext", "next", "hasNext", "next", "hasNext"]
[[[7, 3, 15, null, null, 9, 20]], [], [], [], [], [], [], [], [], []]
输出
[null, 3, 7, true, 9, true, 15, true, 20, false]
解释
BSTIterator bSTIterator = new BSTIterator([7, 3, 15, null, null, 9, 20]);
bSTIterator.next(); // 返回 3
bSTIterator.next(); // 返回 7
bSTIterator.hasNext(); // 返回 True
bSTIterator.next(); // 返回 9
bSTIterator.hasNext(); // 返回 True
bSTIterator.next(); // 返回 15
bSTIterator.hasNext(); // 返回 True
bSTIterator.next(); // 返回 20
bSTIterator.hasNext(); // 返回 False
提示:
- 树中节点的数目在范围 [1, 105] 内
- 0 <= Node.val <= 106
- 最多调用 105 次 hasNext 和 next 操作
进阶:
- 你可以设计一个满足下述条件的解决方案吗?next() 和 hasNext() 操作均摊时间复杂度为 O(1) ,并使用 O(h) 内存。其中 h 是树的高度。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/binary-search-tree-iterator。
- 递归 构造函数中将二叉树的中序遍历存储到一个
vector
中,然后使用vector
实现这个迭代器,比较简单。 - 迭代,利用
stack
通过迭代的方式实现中序遍历,在每次next
的时候维护这个stack
,初始化时就不用进行二叉树的中序遍历。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class BSTIterator {
public:
BSTIterator(TreeNode* root) : current(root){
}
int next() {
while (current) {
sta_node.push(current);
current = current->left;
}
current = sta_node.top();
sta_node.pop();
int result = current->val;
current = current->right;
return result;
}
bool hasNext() {
return current != nullptr || !sta_node.empty();
}
private:
TreeNode* current;
stack<TreeNode*> sta_node;
};