120. 三角形最小路径和
给定一个三角形 triangle ,找出自顶向下的最小路径和。
每一步只能移动到下一行中相邻的结点上。相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。也就是说,如果正位于当前行的下标 i ,那么下一步可以移动到下一行的下标 i 或 i + 1 。
示例 1:
输入:triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
输出:11
解释:如下面简图所示:
2
3 4
6 5 7
4 1 8 3
自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。
示例 2:
输入:triangle = [[-10]]
输出:-10
提示:
- 1 <= triangle.length <= 200
- triangle[0].length == 1
- triangle[i].length == triangle[i - 1].length + 1
- -104 <= triangle[i][j] <= 104
进阶:
你可以只使用 O(n) 的额外空间(n 为三角形的总行数)来解决这个问题吗?
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/triangle。
- 动态规划
从下到上进行迭代,每一行i
位置的最小值等于下一行i
和i+1
位置的最小值加上改行i
位置的值。而最底一行直接等于triangle[triangle.size()-1]
。
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
vector<int> re = triangle[triangle.size()-1];
for (int i = triangle.size() - 2; i >= 0; --i) {
for (int j = 0; j <= i; ++j) {
re[j] = std::min(re[j], re[j+1]) + triangle[i][j];
}
}
return re[0];
}
};