文章目录
前言
大家好,我是亚马逊云科技成都 User Group Leader,CSDN 成都城市开发者社区(以下简称:CSDN 成都站)、CSDN 数据库技术专区主理人郭靖。3 月 23 日,亚马逊云科技成都 UserGroup 成功了举办以“DeepSeek,探索 AI 无限潜力!”为主题的线下技术大会,吸引了 100 余位开发者、企业技术负责人及 AI 爱好者参与。活动聚焦生成式 AI 技术革新与行业落地,通过主题演讲、实战分享,为西南地区开发者搭建了深度交流平台。声明:本文由作者“白鹿第一帅”于 CSDN 社区原创首发,未经作者本人授权,禁止转载!爬虫、复制至第三方平台属于严重违法行为,侵权必究。亲爱的读者,如果你在第三方平台看到本声明,说明本文内容已被窃取,内容可能残缺不全,强烈建议您移步“白鹿第一帅” CSDN 博客查看原文,并在 CSDN 平台私信联系作者对该第三方违规平台举报反馈,感谢您对于原创和知识产权保护做出的贡献!
文章作者:白鹿第一帅,作者主页:https://blog.csdn.net/qq_22695001,未经授权,严禁转载,侵权必究!
一、活动介绍
活动以亚马逊云科技生成式 AI 全栈能力为核心,重点解析了托管服务 Amazon Bedrock 如何通过预训练大模型加速 AI 原生应用开发。来自亚马逊云科技的架构师结合电商、医疗等本地化案例,演示了从模型微调到行业解决方案落地的全链路实践,并针对软件开发场景推出 hands-on 实操环节,助力开发者快速掌握提示工程与模型部署技巧。活动特别设置“女性力量”专题环节,多位女性技术领袖就 AI 时代职业发展与团队管理展开对话,展现科技领域的多元价值。
备受关注的 hands-on 环节采用"理论+代码"双轨模式,指导开发者基于 Amazon SageMaker 快速构建智能问答系统。参与者通过实战掌握了提示工程优化、RAG 增强生成等关键技术,现场还涌现多个围绕软件开发流程优化的 AI 工具创意。让我们一起来看看活动精彩瞬间和干货总结,再次感受成都 UG 生成式 AI 工作坊的无穷魅力吧!
3 月 23 日成都,DeepSeek,探索 AI 无限潜力!精彩花絮来了!现场活动人数众多,氛围热烈,快来看看有你的身影吗?期待我们下次再见~
二、精彩分享内容及活动议程
2.1、亚马逊云科技社区情况和活动介绍
首先是由主持人成都 UGL 陈岚为我们介绍亚马逊云科技的社区情况和活动。覆盖全球 98 个国家的 470 个亚马逊云科技 User Group 社区,帮助 50 多万名开发者实现自我学习和自我成长,在云计算与人工智能快速发展,推动着传统行业数字化转型不断深入的背景下,以 ChatGPT 和 Stable Diffusion 为代表的自然语言大模型和多模态生成模型对云计算提出的更高要求。
人工智能和生成式 AI 的开发者通过本次活动学习新技术、讨论新观点、认识新场景、分享新想法,充分享受亚马逊云科技开发者社区所带来的开放共享的生态福利。
2.2、《DeepSeek on 亚马逊云科技》
《DeepSeek on 亚马逊云科技》——高郁-亚马逊云科技解决方案架构师
首场分享由亚马逊云科技解决方案架构师高郁展开,高郁老师拥有10 余年软件开发和架构经验,长期服务于国内外知名企业,深入研究 AI、大数据等方向,协助用户进行 IT 和数字化转型的建设和咨询。高郁老师介绍,DeepSeek 模型作为新一代人工智能系统,其核心架构融合了混合专家网络(MoE)与动态路由技术,通过稀疏化激活机制每次智能调用 4-6 个专家模块,配合基于科研论文、专利文档及开源代码构建的跨学科知识图谱,在保持传统 Transformer 模型精度的同时将推理效率提升 3 倍。该模型通过创新的位置插值算法突破 16k token 处理限制,在长文本理解任务中实现 95% 关键信息保留率,并已完成视觉编码器适配测试,具备图文联合推理能力。
在云平台部署方面,用户可通过 Amazon Bedrock 实现 API 即时调用并享受 GPT-3.5 级模型的按 token 计费服务,也可基于 EC2 Inf2 实例搭建私有化部署环境,高郁老师指出,借助 128GB HBM 显存的弹性推理加速芯片获得定制化服务,配合 SageMaker Neo 工具链可将模型体积压缩 70% 且精度损失控制在 2% 以内,同时通过 TLS 1.3 加密传输和 AWS KMS 密钥轮换策略确保数据安全。
此外,高老师提到,在应用场景方面,该模型已成功应用于智能制造领域的设备故障预测(98% 预警准确率)和工艺参数优化(良品率提升 3-5%)、金融服务的合规审查(支持 20+ 类监管条款识别)与量化策略生成(Python/Matlab 双平台代码输出),以及医疗健康的药物相互作用挖掘和皮肤癌诊断辅助系统(F1-score 达 0.91)等跨领域场景。
2.3、《AI 时代软件工程师的探索之旅》
《AI 时代软件工程师的探索之旅》——彭雪梅-创业者、资深前端工程师、fCC 活动组织者
接下来的分享由创业者、资深前端工程师、fCC 活动组织者彭雪梅主持,彭老师现在开启了自主创业之旅,全身心投入到 IT 技能培训中,旨在帮助大家快速高效的提升 IT 技能从而提升竞争力。她的创业项目目前聚焦于前端底层原理技能培训,以 Python 编程、利用 AI 工具为 B 端客户优化工作流程的实践探索。彭老师在分享中特别指出,在 AI 技术深度重构软件开发范式的当下,理解工具链的底层技术机理已成为软件工程师把握行业趋势的关键支点。当前主流的 AI 开发工具普遍采用混合专家网络(MoE)架构,通过动态路由算法实现参数量的智能分配——如 DeepSeek 模型每次仅激活 4-6 个专家模块,在维持 Transformer 模型精度的同时将推理速度提升 300%。这种稀疏化激活机制与知识图谱驱动的上下文感知能力(支持 16k 长文本 95% 信息保留率),正在重塑代码生成、自动化测试等场景的技术实现路径。软件工程师需深入掌握张量并行计算、注意力机制优化等核心算法,才能有效驾驭基于 HuggingFace、LangChain 等框架构建的智能开发工具链。
彭老师谈到,面对 AI 工具引发的生产力变革,软件工程师群体正经历着价值定位的范式迁移。传统编码工作中,约 38% 的重复性功能模块现可通过 GPT-4 级代码生成引擎自动完成,但需求拆解、系统架构设计等创造性工作的比重却提升至 62%。这种转变要求工程师转型为"AI 训导师",既要精通 Prompt 工程实现精准需求传达(如通过思维链技术将业务逻辑转化为机器可理解的指令序列),又要具备模型微调能力——运用 LoRA 等参数高效微调方法,在特定领域数据集上优化开源大模型。更关键的是需要建立人机协作思维,在持续集成流水线中合理部署 AI 代码审查、智能运维预警等模块。
彭老师带领大家展望未来十年,软件工程师的核心竞争力将聚焦于三大前沿领域:首先是 AI 原生系统设计,需掌握基于神经架构搜索(NAS)的模型-硬件协同优化技术,在 AWS Inferentia 等专用芯片上实现推理延迟降低 50%;其次是智能体生态构建,运用强化学习框架开发具备自主迭代能力的数字员工,如在 DevOps 中部署能动态调整 K8s 集群资源的 AI 调度器;最后是可信 AI 工程化,通过差分隐私、联邦学习等技术解决模型偏见和隐私泄露问题。
彭老师鼓励在场的开发者们要学会持续精进图神经网络、多模态融合等硬核技术,更要培养跨学科的体系化思维,在 AI 与软件工程的共生进化中开拓新的价值疆域。
2.4、现场互动情况
现场嘉宾观众积极互动,探讨 DeepSeek,探索 AI 无限潜力的新技术。
2.5、休息茶歇时间
现场为大家准备了精美茶歇,休息时间现场观众也积极互动交流。
2.6、《DeepSeek 解码:算法如何重塑我们的世界》
《DeepSeek 解码:算法如何重塑我们的世界》 ——何静-AFE AI 研究社区联合创始人
下半场分享由何静老师展开,何老师是 AI 社群主理人,前半导体行业头部企业软件工程师,西安交通大学硕士,已发表多篇 AI 领域论文,关注 AI 产品在不同行业的落地实践。何老师开篇即指出,在生成式 AI 赛道竞争白热化的当下,DeepSeek 通过独创的「动态专家选择系统」实现了技术突围。其核心架构采用混合专家模型(MoE)的稀疏化改进方案,通过可微分路由算法动态激活 2.4 万亿参数中的 1.2%(约 30 亿参数),相较传统稠密模型在推理速度上提升 5 倍的同时保持 97% 的基准性能。这种突破性设计源于对 Transformer 架构的三重改造:基于知识蒸馏的专家预训练策略、面向代码逻辑的注意力偏置机制,以及针对长文本优化的记忆增强模块(支持 128k 上下文窗口且信息保留率达 92%)。更关键的是其首创的「过程奖励模型」,通过分解式强化学习将复杂任务拆解为 600+ 子步骤进行精确对齐,使代码生成准确率较 GPT-4 提升 18.6%。
何老师引领大家深入剖析了 DeepSeek 的行业震动本质,这是技术突破与应用场景的共振效应。在代码生成领域,其通过语法树感知的增量式生成技术,将 Python 函数级代码的一次生成准确率推高至 83.7%;作为智能助手时,采用多模态思维链技术实现代码、文本、数学公式的跨模态推理,在 LeetCode 周赛中的解题能力超越 85% 人类选手。这种能力延展正在重构产业格局:从金融领域的智能投研报告生成(响应速度较传统方案提升 40 倍),到生物医药的蛋白质序列优化(成功率提升 22%),其底层技术框架展现出强大的领域迁移能力。
接下来,何老师引导大家进行更深层次的思考,DeepSeek 现象级爆发的底层逻辑,在于开创了「垂直领域预训练+通用能力蒸馏」的新范式。通过构建包含 980 亿行专业代码的训练语料库,配合面向开发者行为的强化学习奖励机制,其代码补全的接受率高达 72%。更值得关注的是其开源生态战略——发布包含 7B/33B 参数的 MoE 模型架构,并配套可视化调试工具链,使中小团队能以 1/10 成本构建专属 AI 工程师。这种技术民主化进程,正推动行业从「模型竞赛」转向「生态构建」的新阶段,为 AI 工程化落地开辟了现实路径。
2.7、《让脱单不再难,AI 时代打造贴身的脱单助攻》
《让脱单不在难,AI 时代打造贴身的脱单助攻》 ——赵晓丽-宇石 AI 联合创始人
最后一个环节由赵晓丽老师带来分享,晓丽老师是一位 20 年科技领域连续创业者,10 年 PMP 项目管理师。现为宇石 AI 联合创始人,负责 AI 商业咨询/AI 产品研发和运营。曾经是腾讯 B 轮战投企业联合创始人,全球 500 强高级系统工程师。拥有生成式 AI 国际认证、国际培训师、CSA 认证引导师、即兴戏剧引导师等多项认证。
晓丽老师从营销的角度给大家带来了新鲜的话题,AI 脱单系统的核心原理是通过分析用户行为数据构建动态模型,例如追踪外卖订单时间规律(如 18:30±15 分钟的轻食订单)、解析聊天记录中的兴趣关键词(用 BERT 模型量化“爬山”等表达的偏好值),形成包含 200+ 参数的个性画像,比传统婚介更能精准捕捉真实需求。
核心技术包括三重智能引擎:行为预测(用 ARIMA 模型预判兴趣衰减趋势)、模糊匹配(以隶属度函数处理“年薪 30 万左右”等弹性条件)和实时对话辅助(LSTM 网络检测冷场后推送高关联话题)。这些技术使匹配精准度提升 40%,首日微信回复率增长 65%。担心效果不好?不怕!实际应用已覆盖多城市,上海测试数据显示 AI 匹配情侣 3 个月交往率达 72%,虚拟约会冷场减少 58%。未来将融合脑机接口(监测心率同步触发“心动提示”)和量子计算,从择偶工具升级为亲密关系全周期管理系统。
2.8、《大模型选型实战 —— 基于 Amazon Bedrock 测评对比和挑选最合适业务的大模型》
《让脱单不在难,AI 时代打造贴身的脱单助攻》 ——高郁、郭靖、李摇、刘文溢
本次实验环节由成都 UGL 李摇主讲,成都 UGL 郭靖、特约讲师刘文溢老师答疑。李摇老师扎根于科技领域,在教育行业内头部公司有丰富的软件开发经验。并为南开大学,中国人民大学等著名高校研发并落地了疫情流动人员监测系统,学生档案管理系统等项目。
本次实验,基于 Amazon Bedrock 构建的深度模型工程化验证体系,通过沙盒环境搭建(支持 8 类主流架构,初始化耗时 18 分钟)、多维性能评估(跨模型对比显示 Claude 3 Opus 代码生成 QPS 达 42.3,MMLU 基准测试准确率 91.2%)及全生命周期管理(资源回收率 100%,混合路由策略降本 31.8%),形成从环境部署、模型验证到生产移植的完整技术闭环。该体系经 Wilcoxon 检验(α=0.05)验证,已成功应用于智能制造领域,实现质量检测异常识别准确率提升至 96.3%。
在实验过程中,答疑环节总结出基于 Amazon Bedrock 搭建多模态模型沙盒环境时,需完成三重技术部署:
- 容器化部署框架支持 Anthropic Claude 3、Meta Llama 3 等 8 类主流架构,配置专用推理单元(vCPU=16,GPU=A10G×2)。
- 构建参数化实验流水线,集成模型微调接口(max_train_steps=5000)与 Prompt 版本控制系统。
- 部署监控矩阵,实时捕获 API 调用延迟及 Token 消耗速率(TPM=23k),通过 Bedrock 控制台的 IAM 细粒度权限策略,实现跨团队协作环境的安全隔离,初始化耗时缩短至 18 分钟。
2.9、合影留念
最后大家一起合影留念。
感谢亚马逊云科技、CSDN 及其他合作社区的支持,感谢所有的社区参与者、讲师、成都 UGL 及运营团队。
更多现场精彩瞬间,快来看看你在哪里:
以上就是本次《DeepSeek,探索 AI 无限潜力!》活动精彩回顾,期待下一次活动与您再次相遇!感谢参加本场 Meetup 的讲师、开发者和志愿者们,也感谢云上持续关注的朋友们!欲知更多信息或活动预告,请持续关注微信公众号【白鹿第一帅】。
三、亚马逊云科技 User Group 期待你的加入
点击下方视频,了解更多内容。
2023 UG 社区宣传视频
3.1、社区介绍
亚马逊云科技 User Group 开发者社区是一个为开发者们提供彼此学习、分享技术实践、培训进阶等活动的技术交流分享社区。亚马逊云科技 User Group 将围绕 6 大技术话题"Container, Data, DevTools, IoT, AI/ML, Serverless"进行分享和交流,期待热爱前沿技术和开源技术的您加入到我们 User Group 大家庭。
3.2、持续招募
社区中的各位组织者均是来自各个行业,有着本职工作的互联网从业者,与此同时我们需要更多新鲜血液的加入!如果你对亚马逊云科技技术感兴趣,业余时间可调配,认同社区的价值观,愿意为社区做出贡献,欢迎加入我们,成为社区讲师或志愿者!
加入方式:公众号【User Group】后台回复“讲师”或“志愿者”,填写报名表单即可!
3.3、微信交流群
关注公众号【User Group】,后台即可获得各社区群二维码,欢迎与我们共赴一场技术之约!
成都 UG 社区,关注公众号【白鹿第一帅】或扫描成都 UGL 郭靖二维码,备注“UG 加群”即可。
文章作者:白鹿第一帅,作者主页:https://blog.csdn.net/qq_22695001,未经授权,严禁转载,侵权必究!
总结
本次活动通过技术研讨与跨界交流,成功搭建了西南地区 AI 开发者的协作平台。参会者反馈显示,超 80% 的开发者表示将尝试应用 Amazon Bedrock 加速业务智能化进程。成都 User Group 将持续输出优质技术内容,携手开发者共同推进 AI 技术的普惠化落地。我是白鹿,一个不懈奋斗的程序猿。望本文能对你有所裨益,欢迎大家的一键三连!若有其他问题、建议或者补充可以留言在文章下方,感谢大家的支持!