最近做头部检测

使用场景:最近做了一个头部检测的模型,现场使用效果是考勤机在正前方的摄像头,检测出有没有人头;

最终选用的网络:https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB

图像的输入size选用:w:120,h:160,产生推选框好像是1118个

推理时间:i5 64位的 cpu,caffe,推理时间是30ms,模型参数是1M;

该项目的注意要点:

1)因为使用了SSD框架,涉及到设置priorbox的参数,就需要统计训练样本resize为目标size后,目标框的宽高比例,宽和高的分布范围;

例如本项目中我使用的是w:h = 720:1280,所以我的w选用了120,h选用了160,而不是反过来。反过来后会导致很多漏检;

2)解决误检问题:加现场数据,网络太小,泛化性能不佳,换了场景就很容易误检,最好使用部署现场的场景数据做训练样本,实在没有太多,做一下背景贴图,或者增加各种背景的数据,增强一下模型的泛化性能。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猫猫与橙子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值