使用场景:最近做了一个头部检测的模型,现场使用效果是考勤机在正前方的摄像头,检测出有没有人头;
最终选用的网络:https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB
图像的输入size选用:w:120,h:160,产生推选框好像是1118个
推理时间:i5 64位的 cpu,caffe,推理时间是30ms,模型参数是1M;
该项目的注意要点:
1)因为使用了SSD框架,涉及到设置priorbox的参数,就需要统计训练样本resize为目标size后,目标框的宽高比例,宽和高的分布范围;
例如本项目中我使用的是w:h = 720:1280,所以我的w选用了120,h选用了160,而不是反过来。反过来后会导致很多漏检;
2)解决误检问题:加现场数据,网络太小,泛化性能不佳,换了场景就很容易误检,最好使用部署现场的场景数据做训练样本,实在没有太多,做一下背景贴图,或者增加各种背景的数据,增强一下模型的泛化性能。