KKT条件总结

1. 等式约束的最优性条件

问题: ( f h ) { min ⁡ f ( x ) s . t h ( x ) = 0 (f h)\left\{\begin{array}{ll}{\min } & {f(x)} \\ {s.t} & {h(x)=0}\end{array}\right. (fh){mins.tf(x)h(x)=0其中f,h为矩阵形式。
KT条件(必要条件)如果 x ∗ x^{*} x为最优解,则存在:
∇ f ( x ∗ ) + ∂ h ′ ( x ∗ ) ∂ x v ∗ = 0 \nabla f\left(x^{*}\right)+\frac{\partial h^{\prime}\left(x^{*}\right)}{\partial x} v^{*}=0 f(x)+xh(x)v=0 h ( x ∗ ) = 0 h\left(x^{*}\right)=0 h(x)=0注:1. f在该点上的梯度=h在该点上梯度的线性组合。几何意义:f在该点上的梯度与h在该点上梯度的线性组合共线。
2. 拉格朗日乘子的意义:拉格朗日乘子表示f对各约束分量扰动的敏感程度

2. 一般约束问题的KKT条件

问题: ( f g h ) { min ⁡ f ( x ) s , t g ( x ) ≤ 0 h ( x ) = 0 (f g h)\left\{\begin{array}{cc}{\min } & {f(x)} \\ {s, t} & {g(x) \leq 0} \\ {} & {h(x)=0}\end{array}\right. (fgh)mins,tf(x)g(x)0h(x)=0KKT条件(必要条件):如果 x ∗ x^{*} x为最优解,则存在:
∇ f ( x ∗ ) + ∂ g ( x ∗ ) ∂ x u + ∂ h ( x ∗ ) ∂ x v = 0 \nabla f\left(x^{*}\right)+\frac{\partial g\left(x^{*}\right)}{\partial x} u+\frac{\partial h\left(x^{*}\right)}{\partial x} v=0 f(x)+xg(x)u+xh(x)v=0 u ⩾ 0 , u ∈ R m , v ∈ R l u \geqslant 0, u \in \mathbf{R}^{m}, \quad v \in \mathbf{R}^{l} u0,uRm,vRl u T g ( x ∗ ) = 0 u^{\mathrm{T}} g\left(x^{*}\right)=0 uTg(x)=0对于凸优化来说,KKT条件为充分必要条件,而对于非凸优化来说,KKT条件为必要条件
注:1. 几何意义:f在该最优点上的负梯度为g,h在该点上梯度的线性组合。
2. 在该最优点上,不等式约束函数g(x)的梯度方向必须与f的梯度方向在g(x)=0的不同侧(否则该点就不是最优点),即g(x)的梯度方向与f的负梯度方向在g(x)=0的同一侧,因此式中有u>=0。对于等式约束来说g的梯度方向可以在g(x)=0的任意一侧,只要保证f的梯度和g的梯度的线性组合共线就行,因此对v的正负性没有要求。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值