笔记本Win10+tensorflow1.14.0+cuda10.0+cudnn7.4.1环境配置,从下载到使用全过程

本文详细介绍了在Windows 10系统下,如何配置Tensorflow 1.14.0与CUDA 10.0及CUDNN 7.4.1的环境,包括下载Visual Studio 2017、CUDA和CUDNN,安装过程,环境变量设置,以及使用pip安装Tensorflow-GPU的步骤。适合初学者参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

环境配置之路,远且一步一坑,来说一下我的环境配置之路吧!

目录

实验设备及参数

第一步 下载

下载Visual Studio 2017  提取码:VSVS

下载CUDA

下载CUDNN

 安装

CUDA安装

CUDNN安装

 环境变量设置

 安装tensorflow

重启电脑,安装完成!


实验设备及参数

电脑:联想拯救者r9000p2021

系统:Windows 10 专业版  20H2

显卡:NVIDIA GeForce RTX 2060 with Max-Q Design  驱动版本版本:27.21.14.5752

Python版本:3.5

tensorflow版本:1.14.0

cuda版本:10.0

cudnn版本:7.4.1

第一步 下载

下载Visual Studio 2017  提取码:VSVS

之所以需要安装这个软件,我从网上看到的资料说cuda运行需要大量的库,直接安装VS能够不需要去一个接一个下载,效率比较高。

如果没有或者版本不对可能遇到的问题:Visual Studio Integration 安装失败问题

分析:这一步一般是因为Visual Studio的版本不是2017导致无法与cuda10.0识别,如果还是失败可以尝试手动办法

为了安装tensorflow-gpu 1.14.0,你可以按照以下步骤进行操作: 1.首先,确保已经安装了Anaconda,你可以从官网下载并安装Anaconda。安装过程中,可以选择将Anaconda添加到环境变量中,也可以选择不添加。 2.接下来,安装CUDA 10.0cuDNN。你可以从CUDA官方网站下载CUDA 10.0,并按照它们的文档进行本地安装。同时,确保选择了本地安装选项。 3.打开Anaconda Prompt,并创建一个新的tensorflow环境。使用以下命令创建一个名为"tensorflow"的环境: conda create -n tensorflow python=3.6 4.激活tensorflow环境。使用以下命令激活tensorflow环境: activate tensorflow 5.tensorflow环境下安装tensorflow-gpu 1.14.0。由于网络可能较慢,你可以选择使用清华大学镜像源进行安装。使用以下命令安装tensorflow-gpu 1.14.0: pip install --ignore-installed --upgrade -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow-gpu==1.14.0 6.安装完成后,你可以使用PyCharm来使用tensorflow环境。在PyCharm的设置中,选择项目解释器,并添加一个现有的环境。选择tensorflow环境中的python.exe文件作为解释器。 请注意,以上步骤是安装tensorflow-gpu 1.14.0的一种方法。但是,请确保你的GPU支持CUDA 10.0,并且你已经正确安装了相应的驱动程序。另外,如果你的需求不是特别需要使用gpu,你也可以考虑安装tensorflow-cpu,它不需要GPU支持。 引用中提到了使用conda指令安装tensorflow-gpu 1.14.0的过程可能比较缓慢,需要耐心等待。引用中提供了使用清华大学镜像源进行安装的方法。而引用中指出在tensorflow 2.x版本中不再区分使用gpu还是cpu,当检测到有gpu并安装了cuda后,会自动调用gpu。如果你的目标是使用gpu,确保你的环境配置正确。如果你遇到任何问题,可以查看你的设备可使用情况,可以使用以下代码查看cpugpu设备的可用情况: from tensorflow.python.client import device_lib print(device_lib.list_local_devices()) 这些命令将显示你的设备列表,包括可用的CPUGPU设备。<span class="em">1</span><span class="em">2</span><span class="em">3</span><span class="em">4</span>
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值