深度学习中的Graph Embedding方法

本文围绕Word2vec和Graph Embedding展开。先介绍了Word2vec基础,包括Google提出的两篇奠基文章及UMich的解释性文章;接着阐述其衍生及应用,如微软将其用于推荐领域、Airbnb用于搜索推荐系统;最后介绍Graph Embedding,涉及多种方法及阿里巴巴的成功应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、第一部分 Word2vec基础

在这里插入图片描述

  1. [Word2Vec]Efficient Estimation of Word Representations in Vector Space (Google 2013)
    Google的Tomas Mikolov提出word2vec的两篇文章之一,这篇文章更具有综述性质,列举了NNLM、RNNLM等诸多词向量模型,但最重要的还是提出了CBOW和Skip-gram两种word2vec的模型结构。虽然词向量的研究早已有之,但不得不说还是Google的word2vec的提出让词向量重归主流,拉开了整个embedding技术发展的序幕。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

进一步有进一步的欢喜

您的鼓励将是我创作的最大动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值