排序算法

基本的排序算法

示例中都会用到的swap方法

	private void swap(int[] nums, int i, int j) {
        int temp = nums[i];
        nums[i] = nums[j];
        nums[j] = temp;
    }

冒泡排序

  1. 简单的冒泡排序
/**
     * 冒泡排序
     *
     * @param nums 待排序序列
     * @param left 待排序序列左端点
     * @param right 待排序序列右端点
     */
    public void bubbleSort(int[] nums, int left, int right) {
        // 最外层for循环控制是第几轮排序
        for (int i = left; i < right; i++) {
            // 内层for循环,一轮比较下来将小数冒泡
            for (int j = right; j > i; j--) {
                // 依次两两比较
                if (nums[j] < nums[j - 1]) {
                    swap(nums, j, j-1);
                }
            }
        }
    }
  1. 改进后的冒泡排序
/**
     * 改进后的冒泡排序
     *
     * @param nums 待排序序列
     * @param left 待排序序列左端点
     * @param right 待排序序列右端点
     */
    public void advancedBubbleSort(int[] nums, int left, int right) {
        // 最外层for循环控制是第几轮排序
        for (int i = left; i < right; i++) {
            // 用来指示某次比较是否进行了交换
            boolean exchanged = false;
            // 内层for循环,一轮比较下来将小数冒泡
            for (int j = right; j > i; j--) {
                if (nums[j] < nums[j - 1]) {
                    swap(nums, j, j-1);
                    exchanged = true;
                }
            }
            // 如果某次比较没有发生交换
            // 则说明序列已经有序了,就退出
            if (!exchanged) {
                return;
            }
        }
    }

插入排序

  1. 直接插入排序
/**
     * 直接插入排序
     *
     * @param nums 待排序序列
     * @param left 待排序序列左端点
     * @param right 待排序序列右端点
     */
    public void insertSort(int[] nums, int left, int right) {
        // 从待排序列的第二个元素开始
        for (int i = left + 1; i <= right; i++) {
            // 如果待插入元素比已经排好的
            // 有序序列的最后一个元素小
            // 则进行插入
            if (nums[i] < nums[i - 1]) {
                int temp = nums[i];
                int j = i - 1;
                // 寻找插入位置
                do {
                    nums[j + 1] = nums[j];
                    j--;
                } while (j >= left && temp < nums[j]);
                nums[j + 1] = temp;
            }
        }
    }
  1. 二分插入排序
/**
     * 二分插入排序
     *
     * @param nums 待排序序列
     * @param left 待排序序列左端点
     * @param right 待排序序列右端点
     */
    public void binaryInsertSort(int[] nums, int left, int right) {
        for (int i = left + 1; i <= right; i++) {
            int temp = nums[i];
            int low = left;
            int high = i - 1;
            // 二分搜索待插入元素应该
            // 插入的位置
            while (low <= high) {
                int middle = (low + high) / 2;
                // 搜索左区间
                if (nums[middle] < temp) {
                    low = middle + 1;
                } else {// 搜索右区间
                    high = middle - 1;
                }
            }
            // 向后移动,空出low位置进行插入
            for (int k = i - 1; k >= low; k--) {
                nums[k + 1] = nums[k];
            }
            nums[low] = temp;
        }
    }

选择排序

/**
     * 选择排序
     *
     * @param nums 待排序序列
     * @param left 待排序序列左端点
     * @param right 待排序序列右端点
     */
    public void selectSort(int[] nums, int left, int right) {
        for (int i = left; i < right; i++) {
            int min = i;
            // 寻找从当前位置到序列末尾
            // 最小的元素
            for (int j = i + 1; j <= right; j++) {
                if (nums[j] < nums[min]) {
                    min = j;
                }
            }
            // 和当前位置交换
            if (min != i) {
                swap(nums, i, min);
            }
        }
    }

希尔排序

/**
     * 希尔排序
     *
     * @param nums 待排序序列
     * @param left 待排序序列左端点
     * @param right 待排序序列右端点
     */
    public void shellSort(int[] nums, int left, int right) {
        // 计算初始步长
        int gap = right - left + 1;
        do {
            // 按步长将序列划分成若干个子序列
            // 对每个子序列进行直接插入排序
            gap = (gap / 3) + 1;
            for (int i = left + gap; i <= right; i++) {
                if (nums[i] < nums[i - gap]) {
                    int temp = nums[i];
                    int j = i - gap;
                    do {
                        nums[j + gap] = nums[j];
                        j = j - gap;
                    } while (j >= left && temp < nums[j]);
                    nums[j + gap] = temp;
                }
            }
        } while (gap > 1);

快速排序

  1. 基本的快速排序
/**
     * 快速排序
     *
     * @param nums 待排序序列
     * @param left 待排序序列左端点
     * @param right 待排序序列右端点
     */
    public void quickSort(int[] nums, int left, int right) {
        if (left < right) {
            // 计算基准位置,左侧的比基准元素小
            // 右侧的比基准元素大
            int pivotposition = partition(nums, left, right);
            // 递归排序左子序列
            quickSort(nums, left, pivotposition - 1);
            // 递归排序右子序列
            quickSort(nums, pivotposition + 1, right);
        }
    }

    private int partition(int[] nums, int left, int right) {
        // 简单的选取第一个元素为基准元素
        int pivot = nums[left];
        int pivotposition = left;
        for (int i = left + 1; i <= right; i++) {
            // 小于基准元素则交换
            if (nums[i] < pivot) {
                pivotposition++;
                if (i != pivotposition) {
                    swap(nums, i, pivotposition);
                }
            }
        }
        // 基准元素归位
        nums[left] = nums[pivotposition];
        nums[pivotposition] = pivot;
        return pivotposition;
    }
  1. 快速排序的两种改进
private final static int MIN_ELEMENTS_SIZE = 25;
    /**
     * 快速排序和插入排序组合
     * 解决当元素数量较小时
     * 使用快速排序效率不高
     * 的问题
     *
     * @param nums 待排序序列
     * @param left 待排序序列左端点
     * @param right 待排序序列右端点
     */
    public void quickInsertSort(int[] nums, int left, int right) {
        if (right - left < MIN_ELEMENTS_SIZE) {
            insertSort(nums, left, right);
        } else {
            quickSort(nums, left, right);
        }
    }

    /**
     * 先进行快速排序
     * 在对小区元素个数
     * 比较小的区间进行
     * 插入排序
     *
     * @param nums 待排序序列
     * @param left 待排序序列左端点
     * @param right 待排序序列右端点
     */
    public void hybridSort(int[] nums, int left, int right) {
        partQuickSort(nums, left, right);
        insertSort(nums, left, right);
    }

    private void partQuickSort(int[] nums, int left, int right) {
        if (right - left < MIN_ELEMENTS_SIZE) {
            return;
        }
        int pivotposition = partition(nums, left, right);
        partQuickSort(nums, left, pivotposition - 1);
        partQuickSort(nums, pivotposition + 1, right);
    }

堆排序

 /**
     * 堆排序
     *
     * @param nums     待排序序列
     */
    public void heapSort(int[] nums) {
       // 按增序排序需要构造最大堆 
       maxHeap(nums);
       int length = nums.length;
       for (int i = length - 1; i > 0; i--) {
           // 第一元素即为最大元素
           // 和当前元素交换
           int temp = nums[0];
           nums[0] = nums[i];
           nums[i] = temp;
           // 再次调整堆
           siftDown(nums, 0, i - 1);
       }
    }

    private void maxHeap(int[] nums) {
        int size = nums.length;
        int currentPosition = (size - 1) / 2;
        while (currentPosition >= 0) {
            // 从currentPosition到size-1
            // 采用自顶向下构造最大堆
            siftDown(nums, currentPosition, size - 1);
            currentPosition--;
        }
    }

    private void siftDown(int[] nums, int start, int end) {
        int i = start;
        int j = 2 * i + 1;
        int temp = nums[i];
        // 有子女
        while (j <= end) {
            // 有左右子女,取最大
            if (j < end) {
                if (nums[j] < nums[j + 1]) {
                    j = j + 1;
                }
            }
            // 父结点比子女大不交换
            if (temp > nums[j]) {
                break;
            } else {
                nums[i] = nums[j];
                i = j;
                j = 2 * i + 1;
            }
        }
        // 子女赋父结点的值
        nums[i] = temp;
    }

归并排序

/**
     * 归并排序
     *
     * @param nums     待排序序列
     * @param numsCopy 辅助数组
     * @param left     待排序序列左端点
     * @param right    待排序序列右端点
     */
    public void mergeSort(int[] nums, int[] numsCopy, int left, int right) {
        if (left >= right) {
            return;
        }
        // 分割为子序列
        int middle = (left + right) / 2;
        mergeSort(nums, numsCopy, left, middle);
        mergeSort(nums, numsCopy, middle + 1, right);
        // 归并
        merge(nums, numsCopy, left, middle, right);
    }

    private void merge(int[] nums, int[] numsCopy, int left, int middle, int right) {
        // 初始化辅助数组
        for (int i = left; i <= right; i++) {
            numsCopy[i] = nums[i];
        }
        int s1 = left;
        int s2 = middle + 1;
        int t = left;
        // 比较左子序列和右子序列
        // 小的放入原始数组的相应位置
        while (s1 <= middle && s2 <= right) {
            if (numsCopy[s1] < numsCopy[s2]) {
                nums[t++] = numsCopy[s1++];
            } else {
                nums[t++] = numsCopy[s2++];
            }
        }
        // 剩余的左子序列直接追加
        while (s1 <= middle) {
            nums[t++] = numsCopy[s1++];
        }
        // 剩余的右子序列直接追加
        while (s2 <= right) {
            nums[t++] = numsCopy[s2++];
        }
    }

各种排序算法的比较

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值