How many ways
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3951 Accepted Submission(s): 2308
Problem Description
这是一个简单的生存游戏,你控制一个机器人从一个棋盘的起始点(1,1)走到棋盘的终点(n,m)。游戏的规则描述如下:
1.机器人一开始在棋盘的起始点并有起始点所标有的能量。
2.机器人只能向右或者向下走,并且每走一步消耗一单位能量。
3.机器人不能在原地停留。
4.当机器人选择了一条可行路径后,当他走到这条路径的终点时,他将只有终点所标记的能量。
如上图,机器人一开始在(1,1)点,并拥有4单位能量,蓝色方块表示他所能到达的点,如果他在这次路径选择中选择的终点是(2,4)
点,当他到达(2,4)点时将拥有1单位的能量,并开始下一次路径选择,直到到达(6,6)点。
我们的问题是机器人有多少种方式从起点走到终点。这可能是一个很大的数,输出的结果对10000取模。
Input
第一行输入一个整数T,表示数据的组数。
对于每一组数据第一行输入两个整数n,m(1 <= n,m <= 100)。表示棋盘的大小。接下来输入n行,每行m个整数e(0 <= e < 20)。
Output
对于每一组数据输出方式总数对10000取模的结果.
Sample Input
1
6 6
4 5 6 6 4 3
2 2 3 1 7 2
1 1 4 6 2 7
5 8 4 3 9 5
7 6 6 2 1 5
3 1 1 3 7 2
Sample Output
3948
此题可以用记忆搜索也可以用DP,在这里我用了一个DP的方法
理解题意,不是说用完了所有能量才能停下来,是在没用完能量之前能到到的位置都能停下来。
对于即将遍历的一点G[i][j],从这点可以走到的区域是一个范围,这范围内的每一个点G[i][j]都可以直接过去且每个点只有一种走法(一种走法只和起点终点有关,和路径无关),因此当dp[i][j]代表已有的可以达到dp[i][j]的走法时,假设dp[i+a][j+b]在G[i][j]可以达到的范围内,那么dp[i+a][j+b]的走法就是原来没选G[i][j]时的走法dp[i+a][j+b]加上选了G[i][j]后能达到G[i][j]的走法dp[i][j]
转移方程为dp[i+a][j+b] = dp[i+a][j+b]+dp[i][j];
中间量可能很大,所以应该写成dp[i+a][j+b] = dp[i+a][j+b]+dp[i][j]%10000;开始是没有这么写而直接在最后输出时dp[m][n]%10000.搞得一直WA。 。
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
//#define LOCAL
using namespace std;
int dp[105][105];
int main()
{
#ifdef LOCAL
freopen("data.in","r",stdin);
freopen("data.out","w",stdout);
#endif // LOCAL
int N;
scanf("%d",&N);
while(N--){
int m,n;
int i,j;
int a,b;
int k;
scanf("%d%d",&m,&n);
memset(dp,0,sizeof(dp));
dp[1][1] = 1;
for(i = 1;i<=m;i++)
for(j = 1;j<=n;j++){
scanf("%d",&k);
for(a = 0;a<=k;a++)
for(b = 0;a+b<=k;b++)
if(a == 0&&b == 0)
continue;
else if(i+a<=m&&j+b<=n)
dp[i+a][j+b] = (dp[i+a][j+b]+dp[i][j])%10000;
}
printf("%d\n",dp[m][n]);
}
return 0;
}