算法导论之中位数和顺序统计量(1)

期望为线性时间的选择算法

顾名思义,此算法的期望为线性时间。算法RANDOMIZED-SELECT是以快排为基本模型的。与快排一样,我们依然将输入数组进行递归划分。但是由于本算法的目的是找出数组中第i小的数,因此我们只需要对一边进行处理即可。这一差异体现在算法的时间性能上,快排的期望运行时间是O(nlgn),而此算法的期望运行时间是O(n)。在算法RANDOMIZED-SELECT中,我们用到了之前第7章快排里面的RANDOMIZED-PATITION算法。

算法RANDOMIZED-SELECT(A,p,r,i) (A是数组名,元素都存放在数组A中,p是数组的首个元素的下标,r是数组的最后一个元素的下标,i就是将要找数组中第i小的元素)的伪代码如下:

RANDOMIZED-SELECT(A,p,r,i)

if p==r

  return A[p];

q=RANDOMIZED-PATITION(A,p,r);

k=q-p+1;   //计算q的下标,赋值给k,k表示第k小,而q表示是数组中的第q个元素

if i==k    //the point value is the answer

  returnA[q];

else if i<k

  returnRANDOMIZED-SELECT(A,p,q-1,i);

else return RANDOMIZED-SELECT(A,q+1,r,i-k);

经过数学分析和计算,得到算法时间复杂度为O(n)

并且有这样的结论:假设所有元素都是互异的,在期望线性时间内,我们可以找到任意顺序统计量,特别是中位数。

下面附上与本算法相关的第7章的相关算法:

RANDOMIZED-PARTITION(A,p,r)函数:

RANDOMIZED-PARTITION(A,p,r):

If p<r

  q=PARTITION(A,p,r);

  RANDOMIZED-PARTITION(A,p,q-1);

RANDOMIZED-PARTITION(A,q+1,r);

PARTITION(A,p,r)函数:

PARTITION(A,p,r)

x=A[r];

i=p-1;

for j=p to r-1

  if A[j]<=x

i=i+1;

exchange A[i] with A[j];

exchange A[i+1] with A[r];

return i+1;

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值