flink(十二):Table&Sql实现kafka输入输出

分享

说明

  • 本博客每周五更新一次。
  • 实时计算处理中,kafka是重要的分布式消息队列,常作为 Flink 计算的输入和输出,本博客将使用 Flink 1.2实现 kafka 对数据的输入和输出操作。

资料

过程

  • 从kafka:input_kafka主题消费数据并生成Table,然后过滤状态为success的数据再写回到kafka:outpu_kafak主题

代码

  • 代码开发基于java1.8+flink1.12,kafka等环境搭建过程参照前几篇博客。
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.TableResult;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;

/***
 * 
 * @author wangzonghui
 * @date 2021-06-15 10:34:14
 * @Description Table API And SQl实例四:从kafka:input_kafka主题消费数据并生成Table,然后过滤状态为success的数据再写回到kafka:outpu_kafak主题
 * 文档地址:https://ci.apache.org/projects/flink/flink-docs-release-1.12/zh/dev/table/connectors/kafka.html
 * 	
 *  
 */
public class KafkaDeamo {
	
	public static void main(String[] args) throws Exception {
		//TODO 1. env环境准备
		StreamExecutionEnvironment env=StreamExecutionEnvironment.getExecutionEnvironment();
		EnvironmentSettings settings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();
		StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env,settings);
		
		//TODO 2. source
		TableResult inputTable = tableEnv.executeSql("CREATE TABLE input_kafka (\n"
				+ " `user_id` BIGINT,\n"
				+ " `page_id` BIGINT,\n"
				+ " `status` STRING\n"
				+ " ) WITH (\n"
				+ " 'connector' = 'kafka',\n"
				+ " 'topic' = 'input_kafka',\n"
				+ " 'properties.bootstrap.servers' = 'localhost:9092',\n"
				+ " 'properties.group.id' = 'testGroup',\n"
				+ " 'scan.startup.mode' = 'latest-offset',\n"
				+ " 'format' = 'json'\n"
				+ ")"
			);
		
		//TODO 3. transformation 将DataStream数转换Table和View,然后查询
		String sql="select * from input_kafka where status='success'";
		Table tableResult=tableEnv.sqlQuery(sql);
		
		//TODO 4. sink
		DataStream<Tuple2<Boolean, Row>> resultDs=tableEnv.toRetractStream(tableResult, Row.class);
		resultDs.print();
		
		TableResult outputTable = tableEnv.executeSql("CREATE TABLE output_kafka (\n"
				+ " `user_id` BIGINT,\n"
				+ " `page_id` BIGINT,\n"
				+ " `status` STRING\n"
				+ " ) WITH (\n"
				+ " 'connector' = 'kafka',\n"
				+ " 'topic' = 'output_kafka',\n"
				+ " 'properties.bootstrap.servers' = 'localhost:9092',\n"
				+ " 'format' = 'json',\n"
				+ " 'sink.partitioner'= 'round-robin'\n"   //分期放手
				+ ")"
			);
		
		tableEnv.executeSql("insert into output_kafka select * from "+tableResult);  //从结果表查数据,转存到输出表
		//TODO 5. execute
		env.execute("");
	}

}

kafka操作

  • 创建输入和输出topic
    • inputkafka:bin\kafka-topics.bat --create --zookeeper localhost:2181 --replication-factor 1 --partitions 3 --topic input_kafka
    • outputkafka:bin\kafka-topics.bat --create --zookeeper localhost:2181 --replication-factor 1 --partitions 3 --topic output_kafka
  • 进入输入topic:kafka-console-producer.bat --broker-list localhost:9092 --topic input_kafka
    • 添加数据:{“user_id”:“1”,“page_id”:“1”,“status”:“success”}
  • 打印输出topic:kafka-console-consumer.bat --bootstrap-server localhost:9092 --topic output_kafka --from-beginning

总结

  • Table API 定制型强,但接口变动快,适配性查,如果要满足版本更替,建议使用 SQL 开发。
  • 选择好方向,争取成为某领域专家。
Flink中,使用SQL实现Kafka作为数据源(KafkaSource)和Kafka作为数据汇(KafkaSink)是非常常见且高效的操作。以下是如何使用Flink SQL实现KafkaSource和KafkaSink的步骤: ### 1. 配置Kafka连接器 首先,需要确保Flink集群中已经包含了Kafka连接器。可以通过以下命令启动Flink集群并加载Kafka连接器: ```shell ./bin/start-cluster.sh ./bin/sql-client.sh embedded -j path/to/flink-sql-connector-kafka.jar ``` ### 2. 创建Kafka源表 使用SQL语句创建一个Kafka源表。假设Kafka的主题名为`input_topic`,并且使用JSON格式的数据: ```sql CREATE TABLE kafka_source ( id INT, name STRING, age INT, proctime AS PROCTIME() ) WITH ( 'connector' = 'kafka', 'topic' = 'input_topic', 'properties.bootstrap.servers' = 'kafka_broker1:9092,kafka_broker2:9092', 'properties.group.id' = 'flink_group', 'format' = 'json', 'scan.startup.mode' = 'earliest-offset' ); ``` ### 3. 创建Kafka汇表 使用SQL语句创建一个Kafka汇表。假设Kafka的主题名为`output_topic`,并且使用JSON格式的数据: ```sql CREATE TABLE kafka_sink ( id INT, name STRING, age INT ) WITH ( 'connector' = 'kafka', 'topic' = 'output_topic', 'properties.bootstrap.servers' = 'kafka_broker1:9092,kafka_broker2:9092', 'format' = 'json' ); ``` ### 4. 编写并执行查询 编写一个简单的查询,将数据从`kafka_source`表读取并写入`kafka_sink`表: ```sql INSERT INTO kafka_sink SELECT id, name, age FROM kafka_source WHERE age > 30; ``` ### 5. 运行查询 执行上述查询语句,Flink将会启动一个流处理作业,将数据从Kafka源表读取并写入Kafka汇表。 ### 总结 通过以上步骤,你可以使用Flink SQL实现Kafka作为数据源和汇表的数据流处理。Flink SQL的简洁性和强大的流处理能力使得数据处理任务变得更加高效和易于维护。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值