数字信号处理课后作业
Peter_831
这个作者很懒,什么都没留下…
展开
-
现代数字信号处理课后作业【完结篇】
感谢大家的陪伴,学无止境。现代数字信号处理课后作业(完结篇)设各态历经平稳随机信号的观测值x(n)x(n)x(n)={1,-1,2,-2;n=0~3};试用周期法和相关法求其功率谱估计值PN(w)P_N(w)PN(w),验证其一致性。周期图法:①先求信号频谱函数XN(ejw)=∑n=0N−1x(n)e−jwnX_N(e^{jw})=\sum\limits_{n=0}^{N-1}x(n)e^{-jwn}XN(ejw)=n=0∑N−1x(n)e−jwn②再求功率谱密度PN(w)=1N∣XN.原创 2020-12-19 14:33:56 · 6477 阅读 · 7 评论 -
现代数字信号处理课后作业【第七章】&IIR巴特沃兹&FIR数字滤波器设计
文章目录现代数字信号处理课后作业【第七章】7-1 要求设计一个线性相位数字滤波器(矩形窗)。Hd(ejw)={1w1⩽∣w∣⩽w20其它H_d(e^{jw})=\begin{cases} 1 & w_1\leqslant |w|\leqslant w_2 \\ 0 &其它\end{cases}Hd(ejw)={10w1⩽∣w∣⩽w2其它(1) N为奇数,求h(n)h(n)h(n)(2) N为偶数,求h(n)h(n)h(n)(3) 若用布莱克曼窗设计,求出以上两种形式的h(n原创 2020-12-14 14:22:01 · 7892 阅读 · 12 评论 -
现代数字信号处理课后作业【第六章】
文章目录现代数字信号处理课后作业【第六章】6-2 用双线性变换法及冲激响应不变法将下列模拟系统函数Ha(s)H_a(s)Ha(s)转变成数字系统函数H(z)H(z)H(z)(1)Ha(s)=3(s+1)(s+3) T=0.5(1)H_a(s)=\dfrac{3}{(s+1)(s+3)} \ \ \ \ \ \ \ T=0.5(1)Ha(s)=(s+1)(s+3)3  原创 2020-12-08 00:51:45 · 6734 阅读 · 21 评论 -
现代数字信号处理课后作业【第五章】
文章目录现代数字信号处理课后作业【第五章】5-3 用直接形式Ⅰ、直接形式Ⅱ结构实现以下系统函数。(1) H(z)=−5+2z−1−0.5z−21+3z−1+3z−2+z−3H(z)=\dfrac{-5+2z^{-1}-0.5z^{-2}}{1+3z^{-1}+3z^{-2}+z^{-3}}H(z)=1+3z−1+3z−2+z−3−5+2z−1−0.5z−2(2) H(z)=0.8(3z3+2z2+2z+5)z3+4z2+3z+2H(z)=\dfrac{0.8(3z^3+2z^2+2z+5)}{z^3+4z原创 2020-11-23 15:10:18 · 6685 阅读 · 22 评论 -
现代数字信号处理课后作业【第三章】及实践-DIT2-FFT编程&谱分析
文章目录现代数字信号处理课后作业【第三章】3-3 若周期实序列xp(n)x_p(n)xp(n)是n的偶函数,则Xp(k)X_p(k)Xp(k)也是实序列且为kkk的偶函数,试证明之。3-4 设x(n)={10⩽n⩽30其它x(n)=\begin{cases}1 & 0\leqslant n\leqslant 3 \\0 & 其它 \end{cases}x(n)={100⩽n⩽3其它 h(n)={14⩽n⩽60其它h(n)=\begin{cases}1 & 4\le原创 2020-11-06 21:54:23 · 8110 阅读 · 24 评论 -
现代数字信号处理课后作业【第二章】
文章目录现代数字信号处理第二章作业2-1 求下列序列z变换及其零、极点(1) δ(n−n0)\delta(n-n_0)δ(n−n0)(2) 0.5nu(n)0.5^nu(n)0.5nu(n)2-7 已知X(z)=−3z−12−5z−1+2z−2,在下列三种收敛域情况下,求其反变换X(z)=\dfrac{-3z^{-1}}{2-5z^{-1}+2z^{-2}},在下列三种收敛域情况下,求其反变换X(z)=2−5z−1+2z−2−3z−1,在下列三种收敛域情况下,求其反变换(1) ∣z∣>2|z|&g原创 2020-10-15 21:46:50 · 6017 阅读 · 0 评论 -
现代数字信号处理课后作业【第一章】
文章目录1-2 判断下列序列是否为周期序列,若是,确定其周期(1) $ x(n)=Acos\big(\dfrac{3\pi n}{7}-\dfrac{\pi}{8}\big) $(2) $ x(n)=e^{j\big(\dfrac{n}{8}-\pi\big)} $1-3 系统框图如下,已知边界条件为y(-1)=0,分别求出以下输入序列时的y(n),并画出图形,y(n)=x(n)+13y(n−1)y(n)=x(n)+\dfrac{1}{3}y(n-1)y(n)=x(n)+31y(n−1)(1) x(n)=原创 2020-10-09 13:15:42 · 5601 阅读 · 9 评论